實習報告網

導航欄

×

初中數學知識點歸納

發布時間:2025-04-25

初中數學知識點歸納。

初中數學知識點歸納 篇1

相反數

1.相反數

只有符號不同的兩個數叫做互為相反數,其中一個是另一個的相反數,0的相反數是0。

注意:

⑴相反數是成對出現的;

⑵相反數只有符號不同,若一個為正,則另一個為負;

⑶0的相反數是它本身;相反數為本身的數是0。

2.相反數的性質與判定

⑴任何數都有相反數,且只有一個;

⑵0的相反數是0;

⑶互為相反數的兩數和為0,和為0的兩數互為相反數,即a,b互為相反數,則a+b=0

3.相反數的幾何意義

在數軸上與原點距離相等的兩點表示的兩個數,是互為相反數;互為相反數的兩個數,在數軸上的對應點(0除外)在原點兩旁,并且與原點的距離相等。0的相反數對應原點;原點表示0的相反數。說明:在數軸上,表示互為相反數的兩個點關于原點對稱。

4.相反數的求法

⑴求一個數的相反數,只要在它的'前面添上負號“-”即可求得(如:5的相反數是-5);

⑵求多個數的和或差的相反數時,要用括號括起來再添“-”,然后化簡(如;5a+b的相反數是-(5a+b)。化簡得-5a-b);

⑶求前面帶“-”的單個數,也應先用括號括起來再添“-”,然后化簡(如:-5的相反數是-(-5),化簡得5)

5.相反數的表示方法

一般地,數a的相反數是-a,其中a是任意有理數,可以是正數、負數或0。

當a>0時,-a<0(正數的相反數是負數)

當a<0時,-a>0(負數的相反數是正數)

當a=0時,-a=0,(0的相反數是0)

初中數學知識點歸納 篇2

平方根:

①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。

②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。

③一個正數有2個平方根/0的平方根為0/負數沒有平方根。

④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

立方根:

①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。

②正數的立方根是正數、0的立方根是0、負數的立方根是負數。www.alwaycall.com

③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

實數:

①實數分有理數和無理數。

②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。

③每一個實數都可以在數軸上的一個點來表示。

初中數學知識點歸納 篇3

整式的乘法

(一)單項式與單項式相乘

1、單項式乘法法則:單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,其余字母連同它的指數不變,作為積的因式。

2、系數相乘時,注意符號。

3、相同字母的冪相乘時,底數不變,指數相加。

4、對于只在一個單項式中含有的字母,連同它的指數一起寫在積里,作為積的因式。

5、單項式乘以單項式的結果仍是單項式。

6、單項式的乘法法則對于三個或三個以上的單項式相乘同樣適用。

(二)單項式與多項式相乘

1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。

2、運算時注意積的符號,多項式的每一項都包括它前面的符號。

3、積是一個多項式,其項數與多項式的項數相同。

4、混合運算中,注意運算順序,結果有同類項時要合并同類項,從而得到最簡結果。

(三)多項式與多項式相乘

1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進行,即一個多項式的每一項乘以另一個多項式的每一項。在未合并同類項之前,積的項數等于兩個多項式項數的積。

3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應用“同號得正,異號得負”。

4、運算結果中有同類項的要合并同類項。

5、對于含有同一個字母的一次項系數是1的兩個一次二項式相乘時,可以運用下面的公式簡化運算:(x+a)(x+b)=x2+(a+b)x+ab。

初中數學知識點歸納 篇4

圓周角定理及其推論

1、圓周角

頂點在圓上,并且兩邊都和圓相交的角叫做圓周角。

2、圓周角定理

一條弧所對的圓周角等于它所對的圓心角的一半。

推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

推論3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

直角坐標系與點的位置

1、直角坐標系中,點A(3,0)在y軸上。

2、直角坐標系中,x軸上的任意點的橫坐標為0.

3、直角坐標系中,點A(1,1)在第一象限。

4、直角坐標系中,點A(-2,3)在第四象限。

5、直角坐標系中,點A(-2,1)在第二象限。

基本函數的概念及性質

1、函數y=-8x是一次函數。

2、函數y=4x+1是正比例函數。

3、函數是反比例函數。

4、拋物線y=-3(x-2)2-5的開口向下。

5、拋物線y=4(x-3)2-10的對稱軸是x=3。

6、拋物線的頂點坐標是(1,2)。

7、反比例函數的圖象在第一、三象限。

初中數學知識點歸納 篇5

數軸

1.數軸的概念

規定了原點,正方向,單位長度的直線叫做數軸。

注意:

⑴數軸是一條向兩端無限延伸的直線;

⑵原點、正方向、單位長度是數軸的三要素,三者缺一不可;

⑶同一數軸上的單位長度要統一;

⑷數軸的三要素都是根據實際需要規定的。

2.數軸上的點與有理數的關系

⑴所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。

⑵所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的'點不是一一對應關系。(如,數軸上的點π不是有理數)

3.利用數軸表示兩數大小

⑴在數軸上數的大小比較,右邊的數總比左邊的數大;

⑵正數都大于0,負數都小于0,正數大于負數;

⑶兩個負數比較,距離原點遠的數比距離原點近的數小。

4.數軸上特殊的(小)數

⑴最小的自然數是0,無的自然數;

⑵最小的正整數是1,無的正整數;

⑶的負整數是-1,無最小的負整數

5.a可以表示什么數

⑴a>0表示a是正數;反之,a是正數,則a>0;

⑵a<0表示a是負數;反之,a是負數,則a<0

⑶a=0表示a是0;反之,a是0,則a=0

初中數學知識點歸納 篇6

三種“冪的運算法則”異同點

1、共同點:

(1)法則中的底數不變,只對指數做運算。

(2)法則中的底數(不為零)和指數具有普遍性,即可以是數,也可以是式(單項式或多項式)。

(3)對于含有3個或3個以上的運算,法則仍然成立。

2、不同點:

(1)同底數冪相乘是指數相加。

(2)冪的乘方是指數相乘。

(3)積的乘方是每個因式分別乘方,再將結果相乘。

初中數學知識點歸納 篇7

旋轉

1、概念:

把一個圖形繞著某一點O轉動一個角度的圖形變換叫做旋轉,點O叫做旋轉中心,轉動的角叫做旋轉角。

旋轉三要素:旋轉中心、旋轉方面、旋轉角

2、旋轉的性質:

(1)旋轉前后的兩個圖形是全等形;

(2)兩個對應點到旋轉中心的距離相等

(3)兩個對應點與旋轉中心的連線段的夾角等于旋轉角

3、中心對稱:

把一個圖形繞著某一個點旋轉180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心。

這兩個圖形中的對應點叫做關于中心的對稱點。

4、中心對稱的性質:

(1)關于中心對稱的兩個圖形,對稱點所連線段都經過對稱中心,而且被對稱中心所平分。

(2)關于中心對稱的兩個圖形是全等圖形。

5、中心對稱圖形:

把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

猜你喜歡

更多>
巨臀中文字幕一区二区视频