實習報告網
初中數學函數知識點歸納總結
初中數學函數知識點歸納總結(精華6篇)。
總結是對某一階段的工作、學習或思想中的經驗或情況進行分析研究的書面材料,它可以促使我們思考,為此要我們寫一份總結。你所見過的總結應該是什么樣的?以下是小編精心整理的新人教版初中數學知識點總結(完整版),歡迎大家借鑒與參考,希望對大家有所幫助。
初中數學函數知識點歸納總結 篇1
本節知識包括函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性和函數的圖象等知識點。函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱性是學習函數的圖象的基礎,函數的圖象是它們的綜合。所以理解了前面的幾個知識點,函數的'圖象就迎刃而解了。
一、函數的單調性
1、函數單調性的定義
2、函數單調性的判斷和證明:
(1)定義法
(2)復合函數分析法
(3)導數證明法
(4)圖象法
二、函數的奇偶性和周期性
1、函數的奇偶性和周期性的定義
2、函數的奇偶性的判定和證明方法
3、函數的周期性的判定方法
三、函數的圖象
1、函數圖象的作法
(1)描點法
(2)圖象變換法
2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。
常見考法
本節是段考和高考必不可少的考查內容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數學的每一章聯合考查,多屬于拔高題。多考查函數的單調性、最值和圖象等。
誤區提醒
1、求函數的單調區間,必須先求函數的定義域,即遵循“函數問題定義域優先的原則”。
2、單調區間必須用區間來表示,不能用集合或不等式,單調區間一般寫成開區間,不必考慮端點問題。
3、在多個單調區間之間不能用“或”和“ ”連接,只能用逗號隔開。
4、判斷函數的奇偶性,首先必須考慮函數的定義域,如果函數的定義域不關于原點對稱,則函數一定是非奇非偶函數。
5、作函數的圖象,一般是首先化簡解析式,然后確定用描點法或圖象變換法作函數的圖象。
初中數學函數知識點歸納總結 篇2
一、函數的定義域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被開方數大于等于零;
3、對數的真數大于零;
4、指數函數和對數函數的底數大于零且不等于1;
5、三角函數正切函數y=tanx中x≠kπ+π/2;
6、如果函數是由實際意義確定的解析式,應依據自變量的實際意義確定其取值范圍。
二、函數的解析式的常用求法:
1、定義法;2、換元法;3、待定系數法;4、函數方程法;5、參數法;6、配方法
三、函數的值域的常用求法:
1、換元法;2、配方法;3、判別式法;4、幾何法;5、不等式法;6、單調性法;7、直接法
四、函數的最值的常用求法:
1、配方法;2、換元法;3、不等式法;4、幾何法;5、單調性法
五、函數單調性的.常用結論:
1、若f(x),g(x)均為某區間上的增(減)函數,則f(x)+g(x)在這個區間上也為增(減)函數
2、若f(x)為增(減)函數,則-f(x)為減(增)函數
3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。
4、奇函數在對稱區間上的單調性相同,偶函數在對稱區間上的單調性相反。
5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。
六、函數奇偶性的常用結論:
1、如果一個奇函數在x=0處有定義,則f(0)=0,如果一個函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)
2、兩個奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。
3、一個奇函數與一個偶函數的積(商)為奇函數。
4、兩個函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個是偶函數,那么該復合函數就是偶函數;當兩個函數都是奇函數時,該復合函數是奇函數。
5、若函數f(x)的定義域關于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點是:右端為一個奇函數和一個偶函數的和。
初中數學函數知識點歸納總結 篇3
1.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。
2.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。
3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數化為1 ……(檢驗方程的解)。
4.列一元一次方程解應用題:
(1)讀題分析法:多用于“和,差,倍,分問題”sxw9.CoM
仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的`關系填入代數式,得到方程。
(2)畫圖分析法:多用于“行程問題”
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。
11.列方程解應用題的常用公式:
(1)行程問題:距離=速度·時間;
(2)工程問題:工作量=工效·工時;
(3)比率問題:部分=全體·比率;
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;
(5)商品價格問題:售價=定價·折·,利潤=售價—成本,;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,
S正方形=a2,S環形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。
本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想方法。
初中數學函數知識點歸納總結 篇4
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;
當h>0,k
當h0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;
當h
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的.增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a
4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x?-x?|
當△=0.圖象與x軸只有一個交點;
當△0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a
5.拋物線y=ax^2+bx+c的最值:如果a>0(a
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.
6.用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.
初中數學函數知識點歸納總結 篇5
一、圓的定義
1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。
2.平面上一條線段,繞它的一端旋轉360°,留下的軌跡叫圓。
二、圓心
1.定義1中的定點為圓心。
2.定義2中繞的那一端的端點為圓心。
3.圓任意兩條對稱軸的交點為圓心。
4.垂直于圓內任意一條弦且兩個端點在圓上的線段的二分點為圓心。
注:圓心一般用字母O表示
5.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
6.半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
7.圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。
8.圓的半徑或直徑決定圓的大小,圓心決定圓的位置。
三、圓的基本性質
1.圓的對稱性
(1)圓是軸對稱圖形,它的對稱軸是直徑所在的直線。
(2)圓是中心對稱圖形,它的對稱中心是圓心。
(3)圓是旋轉對稱圖形。
2.垂徑定理
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
3.圓心角的度數等于它所對弧的度數。圓周角的度數等于它所對弧度數的一半。
(1)同弧所對的圓周角相等。
(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。
4.在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。
5.夾在平行線間的`兩條弧相等。
(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。
(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。
(直角三角形的外心就是斜邊的中點。)
6.直線與圓的位置關系。d表示圓心到直線的距離,r表示圓的半徑。
直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;直線與圓沒有交點,直線與圓相離。
四、圓和圓
1.兩個圓沒有公共點且每個圓的點都在另一個圓的外部時,叫做這兩個圓的外離。
2.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的外部,叫做兩個圓的外切。
3.兩個圓有兩個交點,叫做兩個圓的相交。
4.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的內部,叫做兩個圓的內切。
5.兩個圓沒有公共點且每個圓的點都在另一個圓的內部時,叫做這兩個圓的內含。
五、正多邊形和圓
1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。
2.正多邊形與圓的關系:
(1)將一個圓n(n≥3)等分(可以借助量角器),依次連結各等分點所得的多邊形是這個圓的內接正多邊形。
(2)這個圓是這個正多邊形的外接圓。
初中數學函數知識點歸納總結 篇6
1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質:⑴矩形具有平行四邊形的一切性質;
⑵菱形的四條邊都相等;
⑶菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
⑷菱形是軸對稱圖形。
提示:利用菱形的性質可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯系,可得對角線與邊之間的關系,即邊長的平方等于對角線一半的平方和。
3、因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
4、因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④因式分解與整式乘法的關系:m(a+b+c)
5、公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
6、公因式確定方法:①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫成積的形式。
8、平方根表示法:一個非負數a的平方根記作,讀作正負根號a。a叫被開方數。
9、中被開方數的取值范圍:被開方數a≥0
10、平方根性質:①一個正數的平方根有兩個,它們互為相反數。②0的平方根是它本身0。③負數沒有平方根開平方;求一個數的平方根的運算,叫做開平方。
11、平方根與算術平方根區別:定義不同、表示方法不同、個數不同、取值范圍不同。
12、聯系:二者之間存在著從屬關系;存在條件相同;0的算術平方根與平方根都是0
13、含根號式子的意義:表示a的.平方根,表示a的算術平方根,表示a的負的平方根。
14、求正數a的算術平方根的方法;
完全平方數類型:①想誰的平方是數a。②所以a的平方根是多少。③用式子表示。
求正數a的算術平方根,只需找出平方后等于a的正數。
猜你喜歡
更多>-
初中數學歸納知識點 上學的時候,很多人都經常追著老師們要知識點吧,知識點就是掌握某個問題/知識的學習要點。哪些知識點能夠真正幫助到我們呢?下面是小編為大家整理的初中數學圓的知識點總結歸納,歡迎閱讀,希望大家能夠喜歡。初中數學圓的知識點歸納總結 篇11、不在同一直線上的三點確定一個圓。2、垂徑定理垂直于弦的直...
-
初中數學知識點歸納 小學四年級數學知識點歸納總結[year+3:100] 篇1第一單元《認識更大的數》第一課時數一數知識點:1認識數級、數位、計數單位,并了解它們之間的對應關系。數級數位計數單位2、十進制計數法:相鄰兩個計數單位之間的進率是十,也就是十進制關系。3、數數,能一萬一萬地數,十萬十萬地數,一百萬...
- 七年級下冊知識點 時間過得可真快,從來都不等人,我們又將學習新的知識,有新的感受,何不趕緊為即將開展的教學工作做一個計劃呢?以期更好地開展接下來的教學工作,以下是小編整理的七年級地理上冊教學計劃,希望對大家有所幫助。七年級上學期地理重要知識點歸納整理 篇1本學期我任教七年級四個班的地理教育教學工作。在學校的教...
- 小班數學分類教案 隨著社會不斷地進步,我們要有一流的教學能力,反思自己,必須要讓自己抽身出來看事件或者場景,看一段歷程當中的自己。那么反思應該怎么寫才合適呢?下面是小編為大家整理的幼兒園小班數學公開課教案《圖形分類》含反思(通用12篇),希望對大家有所幫助。小班數學分類教案 篇1教學目的通過學習,認識魚的...
- 防溺水安全知識教案 在教學工作者實際的教學活動中,可能需要進行教案編寫工作,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當的教學方法。那要怎么寫好教案呢?以下是小編收集整理的初中生防溺水安全教育教案(通用11篇),歡迎閱讀,希望大家能夠喜歡。初中生防溺水安全知識教案 篇1教學目標:1.初步了解防溺...
- 入團申請書初中800 作為學生,我們要勤奮學習,提升自身能力。要加入共青團需填寫入團申請書,我們可參考所需要求,認真準備入團申請書。以下是小編為大家收集的初中入團申請書范文800字,歡迎大家分享。入團申請書800字初中 篇1敬愛的共青團組織:青春是美好的,不應該虛度,我申請加入我們青年人自己的組織!李太白嘆人生易...
- 七年級下冊知識點12-31
- 小班數學分類教案01-01
- 防溺水安全知識教案08-17
- 入團申請書初中80008-27
- 小學生防溺水安全作文08-18
- 初中生入團志愿書08-31
- 數學實習老師工作總結05-02
- 小學教師實習總結06-23
- 12024大學生求職信500字(合集8篇)12-31
- 2小學50米教案(范例3篇)12-31
- 3個人自述檢討書(模板九篇)12-30
- 4預備黨員思想匯報800字202411-12
- 52024年最新思想報告150011-11
- 62024年第四季度發展對象的思想匯報(必備11篇)11-11
- 72024思想匯報第四季度2000字(摘錄12篇)11-09
- 8入黨積極匯報思想格式模板四個方面(精選十篇)11-06
- 初中數學函數知識點歸納總結(精華6篇)01-01
- 初中數學圓的知識點歸納總結(經典四篇)01-01
- 小學四年級數學知識點歸納總結2024(范本4篇)12-30
- 七年級上學期地理重要知識點歸納整理(精選十三篇)12-31
- 初中數學知識點歸納(精品七篇)12-31
- 初中數學函數知識點歸納總結(精華6篇)01-01
- 初中數學圓的知識點歸納總結(經典四篇)01-01
- 小學四年級數學知識點歸納總結2024(范本4篇)12-30
- 七年級上學期地理重要知識點歸納整理(精選十三篇)12-31
- 機械維修工年終工作總結簡短(集合13篇)01-01
- 2025六一兒童節作文(集合十三篇)01-01
- 情人節最美的祝福語(精品54句)01-01
- 超市銷售個人年終工作總結2025年(模板10篇)01-01
- 乘船教案(優選七篇)01-01
- 各種語言的愛情文案(分享62句)01-01
- 開學祝福語(匯編8句)01-01
- 最新勵志的唯美語錄短句(收藏39句)01-01
- 雙語大賽主持稿(推薦十二篇)01-01