實習報告網

導航欄

×

勾股定理的故事

發布時間:2025-08-07

勾股定理的故事(經典十篇)。

? 勾股定理的故事 ?

一、例題的意圖分析

例1(P83例2)讓學生養成利用勾股定理的逆定理解決實際問題的意識。

例2(補充)培養學生利用方程思想解決問題,進一步養成利用勾股定理的逆定理解決實際問題的意識。

二、課堂引入

創設情境:在軍事和航海上經常要確定方向和位置,從而使用一些數學知識和數學方法。

三、例習題分析

例1(P83例2)

分析:⑴了解方位角,及方位名詞;

⑵依題意畫出圖形;

⑶依題意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30;

⑷因為242+182=302,PQ2+PR2=QR2,根據勾股定理的逆定理,知∠QPR=90°;

⑸∠PRS=∠QPR-∠QPS=45°。

小結:讓學生養成“已知三邊求角,利用勾股定理的逆定理”的意識。

例2(補充)一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀。

分析:⑴若判斷三角形的形狀,先求三角形的三邊長;

⑵設未知數列方程,求出三角形的三邊長5、12、13;

⑶根據勾股定理的逆定理,由52+122=132,知三角形為直角三角形。

解略。

四、課堂練習

1.小強在操場上向東走80m后,又走了60m,再走100m回到原地。小強在操場上向東走了80m后,又走60m的方向是。

2.如圖,在操場上豎直立著一根長為2米的測影竿,早晨測得它的影長為4米,中午測得它的影長為1米,則A、B、C三點能否構成直角三角形?為什么?

3.如圖,在我國沿海有一艘不明國籍的輪船進入我國海域,我海軍甲、乙兩艘巡邏艇立即從相距13海里的A、B兩個基地前去攔截,六分鐘后同時到達C地將其攔截。已知甲巡邏艇每小時航行120海里,乙巡邏艇每小時航行50海里,航向為北偏西40°,問:甲巡邏艇的航向

? 勾股定理的故事 ?

通過本節課的教學,我采用了合作探究、操作體驗的教學方式。在課堂教學中,首先創設情境,提出問題;再讓學生通過做一做、測量、判斷、找規律,猜想出一般性的結論;然后由學生想、做、量一量、猜一猜、去驗證結論……使學生自始至終感悟、體驗、嘗試到了知識的生成過程,品嘗著成功后帶來的樂趣。這不僅使學生學到獲取知識的思想和方法,同時也體會到在解決問題的過程中與他人合作的重要性,而且為學生今后獲取知識以及探索、發現和創造打下了良好的基礎,更增強了學生敢于實踐、勇于探索、不斷創新和努力學習數學知識的信心和勇氣。

要想真正搞好以探究活動,小組合作為主的課堂教學,必須不斷更新教學觀念,使課堂真正成為學生既能自主探究,師生又能合作互動的場所,培養學生成為既有創新能力,又能夠適應現代社會發展的公民

作為教師,在課堂教學中要始終牢記:學生才是學習的主體,學生才是課堂的主體;教師只是課堂教學活動的組織者、引導者與合作者。因此,課堂教學過程的設計,也必須體現出學生的主體性。

? 勾股定理的故事 ?

我按照“理解—掌握—運用”的梯度設計了如下三組習題。

(1)對應難點,鞏固所學;(2)考查重點,深化新知;(3)解決問題,感受應用

第五步 溫故反思 任務后延

在課堂接近尾聲時,我鼓勵學生從“四基”的要求對本節課進行小結。進而總結出一個定理、二個方案、三種思想、四種經驗。

然后布置作業,分層作業體現了教育面向全體學生的理念。

四、教學評價

在探究活動中,教師評價、學生自評與互評相結合,從而體現評價主體多元化和評價方式的多樣化。

五、設計說明

本節課探究體驗貫穿始終,展示交流貫穿始終,習慣養成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。

采用 “七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統文化引入課題,趙爽弦圖證明定理,符合本節課以我國數學文化為主線這一設計理念,展現了我國古代數學璀璨的歷史,激發學生再創數學輝煌的愿望。

以上就是我對《勾股定理》這一課的設計說明,有不足之處請評委老師們指正,謝謝大家。

? 勾股定理的故事 ?

這節課你的收獲是什么?

作業:

1、課本習題2、1.

2、搜集有關勾股定理證明的資料。

板書設計探索勾股定理

如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

設計說明:

1、探索定理采用面積法,為學生創設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法。

2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平。

? 勾股定理的故事 ?

一、 教材分析

1. 教材的地位和作用

它也是幾何中最重要的定理,它將形和數密切聯系起來,在數學的發展中起著重要的作用。

因此他的教育教學價值就具體體現在如下三維目標中:

知識與技能:

1、經歷勾股定理的探索過程,體會數形結合思想。

2、理解直角三角形三邊的關系,會應用勾股定理解決一些簡單的實際問題。

過程與方法:

1、經歷觀察—猜想—歸納—驗證等一系列過程,體會數學定理發現的過程,由特殊到一般的解決問題的方法。

2、在觀察、猜想、歸納、驗證等過程中培養學生們的數學語言表達能力和初步的邏輯推理能力。

情感、態度與價值觀:

1、通過對勾股定理歷史的了解,感受數學文化,激發學習興趣。

2、在探究活動中,體驗解決問題方法的多樣性,培養學生們的合作意識和然所精神。

3、讓學生們通過動手實踐,增強探究和創新意識,體驗研究過程,學習研究方法,逐步養成一種積極的生動的,自助合作探究的學習方式。

由于八年級的學生們具有一定分析能力,但活動經驗不足,所以

本節課教學重點:勾股定理的探索過程,并掌握和運用它。

教學難點:分割,補全法證面積相等,探索勾股定理。

二..教法學法分析:

要上好一堂課,就是要把所確定的三維目標有機地溶入到教學過程中去,所以我采用了“引導探究式”的教學方法:

先從學生們熟知的生活實例出發,以生活實踐為依托,將生活圖形數學化,然后由特殊到一般地提出問題,引導學生們在自主探究與合作交流中解決問題,同時也真正體現了數學課堂是學生們自己的課堂。

學法:我想通過“操作+思考”這樣方式,有效地讓學生們在動手、動腦、自主探究與合作交流中來發現新知,同時讓學生們感悟到:學習任何知識的最好方法就是自己去探究。

三、 教學程序設計

1、 故事引入新課,激起學生們學習興趣。

牛頓,瓦特的故事,讓學生們科學家的偉大成就多數都是在看似平淡無奇的現象中發現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。畢達哥拉斯的發現引入新課。

2、探索新知

在這里我設計了四個內容:

①探索等腰直角三角形三邊的關系

②邊長為3、4、5為邊長的直角三角形的三邊關系

③學生們畫兩直角邊為2,6的直角三角形,探索三邊的關系

④三邊為a、b、c的直角三角形的三邊的關系,(證明)

⑤勾股定理歷史介紹,讓學生們體會勾股定理的文化價值。

體現從特殊到一般的發現問題的過程。

3、新知運用:

①舉出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)

②在直角三角形中,已知∠ B=90° ,AB=6,BC=8,求AC.

③要做一個人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?

④如圖,學校有一塊長方形花鋪,有極少數人為了避開拐角走“捷徑”,在花鋪內走出了一條“路”.他們僅僅少走了 步路(假設2步為1米),卻踩傷了花草.

4、小結本課:

學完了這節課,你有什么收獲?

老師補充:科學家的偉大成就多數都是在看似平淡無奇的現象中發現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。數學來源于實踐,而又應用于實踐。解決一個問題的方法是多樣性的,我們要多思考。 勾股定是數學史上的明珠,證明方法有很多種,我們將在下一節課學習它。

? 勾股定理的故事 ?

教學目標:

一知識技能

1.理解勾股定理的逆定理的證明方法和證明過程;

2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是直角三角形;

二數學思考

1.通過勾股定理的逆定理的探索,經歷知識的發生發展與形成的過程;

2.通過三角形三邊的數量關系來判斷三角形的形狀,體驗數形結合法的應用.

三解決問題

通過勾股定理的逆定理的證明及其應用,體會數形結合法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題.

四情感態度

1.通過三角形三邊的數量關系來判斷三角形的形狀,體驗數與形的內在聯系,感受定理與逆定理之間的和諧及辯證統一關系;

2.在探究勾股定理的逆定理的證明及應用的活動中,通過一系列富有探究性的問題,滲透與他人交流合作的意識和探究精神.

教學重難點:

一重點:勾股定理的逆定理及其應用.

二難點:勾股定理的逆定理的證明.

教學方法

啟發引導分組討論合作交流等。

教學媒體

多媒體課件演示。

教學過程:

一復習孕新,引入課題

問題:

(1) 勾股定理的內容是什么?

(2) 求以線段ab為直角邊的直角三角形的斜邊c的長:

① a=3,b=4

② a=2.5,b=6

③ a=4,b=7.5

(3) 分別以上述abc為邊的三角形的形狀會是什么樣的呢?

二動手實踐,檢驗推測

1.把準備好的一根打了13個等距離結的繩子,按3個結4個結5個結的長度為邊擺放成一個三角形,請觀察并說出此三角形的形狀?

學生分組活動,動手操作,并在組內進行交流討論的基礎上,作出實踐性預測.

教師深入小組參與活動,并幫助指導部分學生完成任務,得出勾股定理的逆命題.在此基礎上,介紹:古埃及和我國古代大禹治水都是用這種方法來確定直角的.

2.分別以2.5cm6cm6.5cm和4cm7.5cm8.5cm為三邊畫出兩個三角形,請觀察并說出此三角形的形狀?

3.結合三角形三邊長度的平方關系,你能猜一猜三角形的三邊長度與三角形的形狀之間有怎樣的關系嗎?

三探索歸納,證明猜想

問題

1.三邊長度分別為3 cm4 cm5 cm的三角形與以3 cm4 cm為直角邊的直角三角形之間有什么關系?你是怎樣得到的?

2.你能證明以2.5cm6cm6.5cm和4cm7.5cm8.5cm為三邊長的三角形是直角三角形嗎?

3.如圖18.2-2,若△ABC的三邊長

滿足

,試證明△ABC是直角三角形,請簡要地寫出證明過程.

教師提出問題,并適時誘導,指導學生完成問題3的證明.之后,歸納得出勾股定理的逆定理.

四嘗試運用,熟悉定理

問題

1例1:判斷由線段

組成的三角形是不是直角三角形:

(1)

(2)

2三角形的兩邊長分別為3和4,要使這個三角形是直角三角形,則第三條邊長是多少?

教師巡視,了解學生對知識的掌握情況.

特別關注學生在練習中反映出的問題,有針對性地講解,學生能否熟練地應用勾股定理的逆定理去分析和解決問題

五類比模仿,鞏固新知

1.練習:練習題13.

2.思考:習題18.2第5題.

部分學生演板,剩余學生在課堂練習本上獨立完成.

小結梳理,內化新知

六1.小結:教師引導學生回憶本節課所學的知識.

2.作業:

(1)必做題:習題18.2第1題(2)(4)和第3題;

(2)選做題:習題18.2第46題.

? 勾股定理的故事 ?

星期四下午講了《勾股定理逆定理》第一課時,現對本節課反思如下:

(1)這節課的設計思路比較合理:著重體現“探究”這一主題,從“古埃及人得到直角三角形的方法”到學生用木棒模仿操作,再到畫圖自己證明等一系列活動,得出“勾股定理逆定理”,而對互逆命題,原命題,逆命題等概念的講解只是作為新課引入的命題點化了一下,沒有詳細講解、把這節課的重點放在了如何讓學生通過三角形三邊關系判斷是否是直角三角形?在經過課堂練習及課堂檢測來強化學生對勾股定理逆定理的理解,分別從三角形的邊和角這方面來引導學生。

(2)本課PPT的使用是想凸顯“特征讓學生觀察,思路讓學生探索,方法讓學生思考,意義讓學生概括,結論讓學生驗證,難點讓學生突破,以學生為主體”的教學思路,每個環節都是緊密相接的。

(3)課堂教學環節和教學效果我感覺很滿意,學生在對問題的回答很積極,在突破難點的過程中,學生通過小組合作實驗交流,自己總結歸納勾股定理逆定理,及證明中我給與學生充分的思考時間讓學生自己完成。整個過程中體現了以學生為主,老師為主導的作用,課堂氣氛活躍,效果挺好。

本節課的不足之處及改進方法:

1、本節課我沒有及時發現學生的錯誤。在學生上黑板做題時出現的錯誤沒能及時發現及改正。

2、課堂檢測做完后應讓學生自己講解,但時間不夠導致這一環節沒能讓學生完成,而是在投影對了答案。

在以后教學中,我會不斷地更新教育理念,結合學生的認知規律、生活經驗對數教材進行再創造,選取密切聯系學生現實生活和生動有趣的數學素材,為學生提供充分的數學活動和交流的空間,真正把創造還給學生,讓學生動起來,讓課堂煥發新的活力。

? 勾股定理的故事 ?

一、教材分析

勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。

據此,制定教學目標如下:

1、理解并掌握勾股定理及其證明。

2、能夠靈活地運用勾股定理及其計算。

3、培養學生觀察、比較、分析、推理的能力。

4、通過介紹中國古代勾股方面的成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。

教學重點:勾股定理的證明和應用。

教學難點:勾股定理的證明。

二、教法和學法

教法和學法是體現在整個教學過程中的,本課的教法和學法體現如下特點:

1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發學生鉆研新知的欲望。

三、教學程序

本節內容的教學主要體現在學生動手、動腦方面,根據學生的認知規律和學習心理,教學程序設計如下:

(一)創設情境 以古引新

1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發學生求知欲。

2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態。

3、板書課題,出示學習目標。

(二)初步感知 理解教材

教師指導學生自學教材,通過自學感悟理解新知,體現了學生的自主學習意識,鍛煉學生主動探究知識,養成良好的自學習慣。

(三)質疑解難 討論歸納

1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發學生的表現欲。

2、教師引導學生按照要求進行拼圖,觀察并分析;

(1)這兩個圖形有什么特點?

(2)你能寫出這兩個圖形的面積嗎?

(3)如何運用勾股定理?是否還有其他形式?

這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

(四)鞏固練習 強化提高

1、出示練習,學生分組解答,并由學生總結解題規律。課堂教學中動靜結合,以免引起學生的疲勞。

2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。

(五)歸納總結 練習反饋

引導學生對知識要點進行總結,梳理學習思路。分發自我反饋練習,學生獨立完成。

本課意在創設愉悅和諧的樂學氣氛,優化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創新精神和實踐能力得到培養。

勾股定理說課稿 篇4

一、勾股定理是我國古數學的一項偉大成就。

勾股定理為我們提供了直角三角形的三邊間的數量關系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據,也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應用于數學和實際生活的各個方面。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析,使學生獲得較為直觀的印象,通過聯系和比較,了解勾股定理在實際生活中的廣泛應用。 據此,制定教學目標如下:

1、知識和方法目標:通過對一些典型題目的思考,練習,能正確熟練地進行勾股定理有關計算,深入對勾股定理的理解。

2、過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的。

3、情感與態度目標:感受數學在生活中的應用,感受數學定理的美。

教學重點:勾股定理的應用。 教學難點:勾股定理的正確使用。

教學關鍵:在現實情境中捕抓直角三角形,確定好直角三角形之后,再應用勾股定理。

二、說教法和學法

1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

2、切實體現學生的主體地位,讓學生通過觀察,分析,討論,操作,歸納理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

3、通過演示實物,引導學生觀察,操作,分析,證明,使學生獲得新知的成功感受,從而激發學生鉆研新知的欲望。

三、教學程序

本節內容的教學主要體現在學生的動手,動腦方面,根據學生的認知規律和學習心理,教學程序設置如下: 回顧問:勾股定理的內容是什么? 勾股定理揭示了直角三角形三邊之間的關系,今天我們來學習這個定理在實際生活中的應用。

? 勾股定理的故事 ?

在初二上學期我們學習了一種很實用并且很容易理解的定理——勾股定理。

勾股定理就是把直角三角形的兩直角邊的平方和等于斜邊的平方這一特性,又稱畢達哥拉斯定理或畢氏定理。

我腦海中印象最深的就是那棵畢達哥拉斯樹,它是由勾股定理不斷的連接從而構成的一個樹狀的幾何圖形。兩個相鄰的小正方形面積的和等于相鄰的一個大正方形的面積。它看起來非常別致、漂亮,因為勾股定理是數學史上的一顆明珠,它將會使人們再算一些問題時變得更方便。

你如果把勾股定理倒過來,它還是勾股定理逆定理,它最大的.好處就在于它能夠證明某些三角形是直角三角形。這一點在我們幾何問題中是有很大價值的。

我國古代的《周髀算經》就有關于勾股定理的記載::“若求邪至日者,以日下為句,日高為股,句股各自乘,并而開方除之,得邪至日”,而且它還記載了有關勾股定理的證明:昔者周公問于商高曰:“竊聞乎大夫善數也,請問昔者包犧立周天歷度——夫天可不階而升,地不可得尺寸而度,請問數安從出?” 商高曰:“數之法出于圓方,圓出于方,方出于矩,矩出于九九八十一。故折矩,以為句廣三,股修四,徑隅五。既方之,外半其一矩,環而共盤,得成三四五。兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數之所生也。”

同時發現勾股定理的還有古希臘的畢達哥拉斯。但是從很多泥板記載表明,巴比倫人是世界上最早發現“勾股定理”的。

由此可見古代的人們是多么的聰明、細心和善于發現!

法國和比利時稱勾股定理為驢橋定理,埃及稱為埃及三角形。我國古代把直角三角形中較短的直角邊叫做勾,較長的直角邊叫做股,斜邊叫做弦,所以它又叫勾股弦定理。

勾股定理流長深遠,我們不能敗給古人,我們一定要善于發現,將勾股定理靈活地運用在生活中,將勾股定理發揚光大!

常見的勾股數按“勾股弦”順序:3,4,5 ;6,8,10;5,12,13 ;7,24,25;8,15,17 ;9,40,41……經過計算表明,勾、股、弦的比例為1:√3:2 。

勾股定理既重要又簡單,更容易吸引人,所以它成百次地反復被人炒作,反復被人論證。1940年出版過一本名為《畢達哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實際上還不止于此,有資料表明,關于勾股定理的證明方法已有500余種,僅我國清末數學家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。

勾股定理必將在人們今后的生活中發揮更大的作用??!

? 勾股定理的故事 ?

一、教材分析

本節課是九年制義務教育課程標準實驗教科書(蘇科版)八年級上冊第二章第一節“勾股定理”的第一課時.在本節課以前,學生已經學習了有關三角形的一些知識,如三角形的三邊不等關系,三角形全等的判定等。也學過不少利用圖形面積來探求數式運算規律的例子,如探求乘法公式、單項式乘多項式法則、多項式乘多項式法則等。在學生這些原有的認知水平基礎上,探求直角三角形的又一重要性質——勾股定理。讓學生的知識形成知識鏈,讓學生已具有的數學思維能力得以充分發揮和發展。

在探求勾股定理的過程中,蘊涵了豐富的數學思想。把三角形有一個直角“形”的特點轉化為三邊之間的“數”的關系,是數形結合的典范;把探求邊的關系轉化為探求面積的關系,將邊不在格線上的圖形轉化為可計算的格點圖形,是轉化思想的體現;先探求特殊的直角三角形的三邊關系,再猜測一般直角三角形的三邊關系,再解決一些特殊直角三角形的問題,這是特殊——一般——特殊的思想。在本節課,要創設問題串,提供學生活動的方案,讓學生在活動中思考,在思考中創新,認識和理解勾股定理,并能利用勾股定理解決一些簡單的有關直角三角形的計算問題.

二、教學目標

1、讓學生經歷從數到形再由形到數的轉化過程,經歷探求三個正方形面積間的關系轉化為三邊數量關系的過程。并從過程中讓學生體會數形結合思想,發展將未知轉化為已知,由特殊推測一般的合情推理能力。

2、讓學生經歷拼圖實驗、計算面積的過程,在過程中養成獨立思考、合作交流的學習習慣;讓各類型的學生在這些過程中發揮自己特長,通過解決問題增強自信心,激發學習數學的興趣;通過老師的介紹,感受勾股定理的文化價值.

3、能說出勾股定理,并能用勾股定理解決簡單問題.

三、教學重點

勾股定理的探索過程.

四、教學難點

將邊不在格線上的圖形轉化為邊在格線上的圖形,以便于計算圖形面積.

五、教學方法與教學手段

采用探究發現式教學,提供適當的問題情境.給學生自主探究交流的空間,引導學生有目的地探索.

六、教學過程

(一)創設情境 提出問題

1.同學們,我們已經學過三角形的一些基本知識,如果一個三角形的兩條邊分別長6和8,你知道第三邊的長嗎?你知道第三邊長的范圍嗎?

2.如果又已知這兩邊的夾角,那么第三邊的長是多少?

3.已知直角三角形的兩邊的長,如何求第三邊的長呢?這節課就讓我們一起來探討這個問題.板書:直角三角形三邊數量關系.

(這是對三角形三邊的不等關系和三角形全等的判定的回顧,從學生從原有的認知水平出發,揭示這節課產生的根源,符合學生的認知心理,也自然地引出本節課的目標.讓學生體會到當一般性的問題不好解決時,可以先將一般問題轉化為特殊問題來研究.)

(二)實踐探索 猜想歸納

1、用什么方法來探求板書:直角三角形三邊數量關系呢?

回憶我們曾經利用圖形面積探索過數學公式,大家還記得在哪用過嗎?

(學生討論)

課件展示:平方差公式、完全平方公式、單項式乘多項式、多項式乘多項式.

今天,讓我們試一試通過計算圖形的面積能不能得到直角三角形三邊數量關系.

(從學生已有的學習經驗出發,將探求邊長之間的關系轉化為探求面積之間的關系,讓學生覺得解決今天問題的方法并不陌生,增強探索問題的信心.)

2、(課件展示圖2)觀察圖形,我們分別以直角三角形ABC的三邊為邊向形外作三個正方形.若將圖形①、②、③、④、⑤剪下,用它們可以拼一個與正方形ABDE大小一樣的正方形嗎?

(同位利用教師提供的學案,合作拼圖。)

通過拼圖,你有什么發現?

(如圖3,以BC為邊的正方形面積與以AC為邊的正方形面積的和等于以AB為邊的正方形面積.拼圖活動,引發了學生的猜想,增加了研究的趣味性,鍛煉了學生的空間思維能力和動手能力.體現了活動——數學的思想.)

3、拼圖活動引發我們的靈感;運算推演

證實我們的猜想.為了計算面積方便,我們可

將這幅圖形放在方格紙中.如果每一個小方格的邊長記作“1”,請你求出圖中三個正方形的面積(圖4).

(學生容易回答SP=9,SQ=16。)

你是如何得到的?

(可以數圖形中的小方格的個數,也可以通

過正方形面積公式計算得到。)

如何計算 ?

(的求法是這節課的難點,這時可讓學生先在學案上獨立分析,再通過小組交流,最后由小組代表到臺前展示.學生可能提出割(圖5)、補(圖6)、平移(圖7)、旋轉(圖8)等方法,旋轉這種方法只適用于斜邊為整數的情況,沒有一般性,若有學生提出,應提醒學生.)

4、肯定學生的研究成果,進而讓學生打開書回顧課本上的提示.從小明、小麗的方法中你能得到什么啟發?

(把圖形進行“割”和“補”,即把不能利用網格線直接計算面積的圖形轉化成可以利用網格線直接計算面積的圖形,讓學生體會將較難的問題轉化為簡單問題的思想)

5、再給出直角邊為5和3的直角三角形(圖9),讓學生計算分別以三邊作為邊所作的正方形面積.

(這是轉化思想,也是“割補”方法的再一次應用.在

前面的探求過程中有的學生沒能自己做出來,提供再一次的機會,可讓全體學生再次感受轉化思想,體驗成功的樂趣.)

通過計算,你發現這三個正方形面積間有什么關系嗎?

(SP+SQ=SR,要給學生留有思考時間.)

6、通過以上的實驗、操作、計算,我們發現以直角三角形的各邊為邊所作的正方形的面積之間有什么關系呢?同學們還有什么疑問嗎?

(以直角邊為邊所作的`正方形的面積和等于以斜邊為邊所作的正方形的面積。如果學生提出我們討論的都是邊長為整數的直角三角形情況,那么邊長是小數時,結論是否成立?教師就演示以下實驗。)

利用方格紙,我們方便計算直角邊為整數的情況,若直角邊為小數時,所得到的正方形面積之間也有如上關系嗎?

將網格線去掉,利用《幾何畫板》的度量工具可以看到SP+SQ=SR.

(利用幾何畫板的高效性、動態性反映這一過程,讓學生體會到更多的特殊情形,從而為歸納提供基礎,這樣歸納的結論更具有一般性,學生的印象也更深刻.)

7、我們這節課是探索直角三角形三邊數量關系.至此,你對直角三角形三邊的數量關系有什么發現?

(面積是邊長的平方,面積間的等量關系轉化為邊長間的等量關系,即直角三角形三邊的等量關系:兩直角邊的平方和等于下邊的平方.)

(這一問題的結論是本節課的點睛之筆,應充分讓學生總結,交流,表達.)

8、用彎曲的手臂形象地表示勾、股、弦的概念,板書勾股定理,進而給出字母表達式.一段緊張的探索過程之后,播放一段有關勾股歷史的錄音.

(這樣既活躍了課堂氣氛,又展現了勾股歷史,激發學生熱愛祖國悠久歷史文化,

激勵學生發奮學習的情感.)

9、閱讀課本,提出問題

(讓學生有將知識內化為自己的知識結構的過程,教師巡視,對有困難的同學給予幫助,促進全班同學共同進步,體現面向全體的教學原則.)

(三)課堂練習 鞏固新知

1.完成課本第45頁練習第1題、第2題.

(1)求下列直角三角形中未知邊的長:

(2)求下列圖中未知數x、y、z的值:

(充分利用課本,在前面閱讀的基礎上做課本上的練習題。提問學生口答,老師再規范板書一題.通過對勾股定理的基本應用,讓學生知道已知直角三角形三邊中的任意兩邊,可以求第三邊.)

2、 如圖:一塊長約80 m、寬約60 m的長方形草坪,被幾個不自覺的學生沿對角線踏出了一條斜“路”,這種情況在生活中時有發生。請問同學們:

(1)這幾位同學為什么不走正路,走斜“路”?

(2)他們知道走斜“路”比正路少走幾步嗎?

(3)他們這樣這樣做,值得嗎?

(這是一道貼近學生生活的實例,在勾股定理的運用中滲透了德育教育.)

(四)課堂小結 布置作業

1、通過本節課的學習,大家有什么收獲?有什么疑問?你認為還有什么要繼續探索的問題?

(學生總結本堂課的收獲,可以是知識、應用、數學思想方法以及獲取新知的途徑等.給學生自由的空間,鼓勵學生多說.這樣引導學生從多角度對本節課歸納總結,感悟點滴,使學生將知識系統化,提高學生的綜合表達能力.如果學生沒有提出繼續要探討的問題,教師可以引導學生思考:直角三角形的三邊有特殊的等量關系,一般三角形三邊是否也存在一種等量關系呢?再展示上課開始的問題:如果一個三角形的兩條邊分別長6和8,這兩邊的夾角確定了,你知道第三邊的長是多少?這是我們今后將要探討的內容,首尾呼應,激發學生不滿足于現狀,有不斷提出新問題的欲望,即培養學生的創新意識.)

2、作業

(1)課本第471頁第2題,并完成第45頁的實驗。

(2)在以下網頁中你可以找到有關勾股定理的豐富的內容,請你結合本節課的學習

和從網上或書本上自學到的知識寫一篇有關勾股定理的小論文,題目自定,一周后交給課代表并展示交流.

n

(作業的多元化、多層次,有利于全體學生的全面素質發展。)教育大全

七、教學設計說明:

本節課根據學生的認知結構采用“觀察--猜想--歸納--驗證--應用”的教學方法,這一流程體現了知識發生、形成和發展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想.

本節課從學生的原有認知出發提出問題,揭示這節課產生的根源,符合學生的認知心理.教科書設計了在方格紙上通過計算面積的方法探究勾股定理的活動,在此基礎上,為了更好地展示這一探索過程,本節課先讓學生回顧利用圖形面積探求數學公式的經歷,以此確定研究方法.繼而設計了剪紙活動,從中引發學生的猜想,再利用幾何畫板這一工具帶領學生從直角邊分別為3和4的直角三角形到更多的任意直角三角形的研究,讓學生充分經歷這一觀察、猜想、歸納的過程.其中SR的求法是探求過程中的難點,應讓學生充分地思考、討論、總結方法.通過對特殊到一般的考查,讓學生主動建立由數到形,由形到數的聯想,從中使學生不斷積累數學活動的經驗,歸納出直角三角形三邊數量之間的關系.在教學中鼓勵學生采用觀察分析,自主探索,合作交流的學習方法,培養學生主動的動手,動腦,動口的學習習慣和能力,使學生真正成為學習的主人.

除了探究出勾股定理的內容以外,本節課還適時地向學生展現勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運用方面的成就,激發學生愛國熱情,培養學生的民族自豪感和探索創新的精神.

練習反饋中既有勾股定理的基本應用,還有貼近學生生活的實例,既讓學生感受到學習知識應用于生活的成就感,又使學生深刻了解勾股定理的廣泛應用.題目的設計中滲透了德育教育,拓展了學生的空間思維,使得一節幾何課全面地考查了學生的各方面思維.

讓學生總結本堂課的收獲,從內容,到數學思想方法,到獲取知識的途徑等方面.給學生自由的空間,鼓勵學生多說.這樣引導學生從多角度對本節課歸納總結,感悟點滴,使學生將知識系統化,提高學生素質,鍛煉學生的綜合及表達能力.

作業為了達到提高鞏固的目的,提供給學生網址是為了拓展學生的視野,以期學生能主動地探求對勾股定理更深入的認識.

猜你喜歡

更多>
91精品国产99久久_天天干天天干天天干天天_国产精品jizz在线观看软件_成人黄色在线播放

  1. <form id="fsw4v"></form>

    <sub id="fsw4v"></sub>

    <strike id="fsw4v"><pre id="fsw4v"></pre></strike>

    <form id="fsw4v"></form>
    <nav id="fsw4v"></nav>
    <form id="fsw4v"></form>
      <sub id="fsw4v"><listing id="fsw4v"><meter id="fsw4v"></meter></listing></sub>

      <nav id="fsw4v"><listing id="fsw4v"><meter id="fsw4v"></meter></listing></nav>
      1. <form id="fsw4v"><th id="fsw4v"><track id="fsw4v"></track></th></form>
        久久九九99| 国产亚洲一区二区精品| 亚洲激情专区| 国产女人水真多18毛片18精品视频| 国产女人18毛片水18精品| 久久嫩草精品久久久精品一| 久久狠狠久久综合桃花| 欧美日韩一区二区三区视频| 久久久久久日产精品| 欧美精品一区二区三区一线天视频| 久久久久久色| 亚洲一区二区网站| 亚洲女同性videos| 在线观看日韩国产| 在线观看国产一区二区| 欧美午夜视频一区二区| 亚洲无人区一区| 国产日韩精品入口| 伊大人香蕉综合8在线视| 国产一区日韩欧美| 噜噜爱69成人精品| 国产精品福利影院| 久久精品一区二区| 久久国产精品亚洲va麻豆| 一区在线电影| 亚洲第一区色| 亚洲欧美日韩精品久久久| 欧美亚洲专区| 久久精品水蜜桃av综合天堂| 日韩亚洲成人av在线| 免费h精品视频在线播放| 久久久www成人免费精品| 欧美伊人精品成人久久综合97| 国产视频自拍一区| 久久久久9999亚洲精品| 久久精品一二三| 一区二区毛片| 久色成人在线| 久久综合精品一区| 日韩一级黄色片| 欧美人成在线| 美女视频网站黄色亚洲| 欧美日本国产在线| 宅男噜噜噜66国产日韩在线观看| 亚洲激情成人在线| 欧美欧美天天天天操| 日韩视频免费观看高清在线视频| 久久久久一区二区三区| 9久草视频在线视频精品| 麻豆九一精品爱看视频在线观看免费| 欧美国产日韩xxxxx| 久久躁日日躁aaaaxxxx| 久久久一本精品99久久精品66| 亚洲欧美在线免费观看| 亚洲视频一二区| 亚洲综合色网站| 在线观看免费视频综合| 国产精品草草| 黄色影院成人| 国产精品日韩久久久久| 欧美精品国产精品日韩精品| 日韩一级二级三级| 欧美日韩直播| 欧美激情亚洲视频| 美女视频一区免费观看| 亚洲视频免费看| 欧美亚州一区二区三区| 欧美三级电影一区| 国产精品爽黄69| 一区在线视频| 国产精品黄视频| 一区二区视频免费完整版观看| 国产精品久久久久久久久免费桃花| 欧美精品日韩| 久久久99久久精品女同性| 国产视频在线观看一区二区三区| 亚洲午夜国产一区99re久久| 国产欧美日韩三级| 久久久国产精品亚洲一区| 久久久久久网| 狼人社综合社区| 一区二区三区成人精品| 免费观看在线综合| 欧美日韩成人一区二区三区| 一区二区三区视频在线看| 国产亚洲精品美女| 亚洲精品一区二区三区av| 日韩视频不卡| 国产欧美日韩一区二区三区在线观看| 亚洲欧美一级二级三级| 亚洲欧洲精品一区二区| av成人动漫| 欧美成人四级电影| 夜夜嗨av一区二区三区网站四季av| 欧美精品日韩一本| 国产精品99久久久久久久vr| 欧美母乳在线| 亚洲观看高清完整版在线观看| 亚洲人妖在线| 国产精品视频导航| 久久久成人精品| 午夜视频一区二区| 亚洲欧洲精品一区二区精品久久久| 亚洲国产日韩综合一区| 国产精品网站视频| 性色av一区二区怡红| 亚洲美女少妇无套啪啪呻吟| 一本色道久久88精品综合| 美女爽到呻吟久久久久| 狠狠爱综合网| 亚洲一区二区三区高清不卡| 最新国产精品拍自在线播放| 久久久精品视频成人| 国产一区二区三区在线观看免费视频| 在线观看视频亚洲| 欧美亚洲视频在线观看| 伊人蜜桃色噜噜激情综合| 国产综合激情| 亚洲欧美国产不卡| 免费亚洲电影在线观看| 欧美一区二区三区在线视频| 欧美中文日韩| 欧美精品一区视频| 久久视频精品在线| 美女诱惑一区| 久久久久久久高潮| 久久精品99国产精品日本| 最新成人av在线| 国内精品久久久久影院薰衣草| 99综合电影在线视频| 日韩视频国产视频| 美日韩丰满少妇在线观看| 国产一区二区三区奇米久涩| 亚洲裸体视频| 亚洲精品国产精品国自产观看| 国产精品久久久亚洲一区| 尤物视频一区二区| 久久国产毛片| 一区二区在线视频| 久久免费视频在线| 快射av在线播放一区| 在线欧美福利| 亚洲激情av| 亚洲精品国产系列| 欧美一级专区| 99精品热视频| 欧美一级片久久久久久久| 亚洲人成网站影音先锋播放| 国产欧美日韩免费看aⅴ视频| 一区二区三区精品| 国产精品chinese| 亚洲区国产区| 久久久国产一区二区三区| 亚洲一区视频在线| 免费看av成人| 韩国欧美一区| 亚洲国产日韩在线| 亚洲欧美激情精品一区二区| 亚洲视频日本| 欧美日一区二区在线观看| 久久精品在线视频| 国产精品视频1区| 欧美激情一区二区在线| 亚洲国产成人高清精品|