實習報告網

導航欄

×

勾股定理思想總結(范本十九篇)

發布時間:2019-08-07

勾股定理思想總結(范本十九篇)。

勾股定理思想總結 · 第1篇

各位老師、評委:大家好﹗

今天我說課的題目是選自人教版八年級數學第十八章第一節的內容:勾股定理。

我將從以下這幾個方面進行本節課的闡述:教材分析、學情分析、教法、學法指導、教學過程設計以及教學反思。

下面請大家和我共同走進教材。

(一)教材分析

⒈教材的地位和作用

《勾股定理》是人教版新課標八年級數學第十八章第一節第一課時內容,勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,是中學數學幾個重要定理之一。它揭示了一個直角三角形三條邊之間的數量關系,是解直角三角形的主要根據之一,在實際生活中用途很大。勾股定理的發現、驗證和應用蘊含著豐富的文化價值,它在理論上占有重要地位,學好本節至關重要。

⒉教學目標

根據新課程標準對學生知識、能力的要求,結合八年級學生實際水平、認知特點制定以下教學目標。

知識與技能:了解勾股定理的文化背景,體驗勾股定理的探索過程,能夠靈活地運用勾股定理及其計算。

過程與方法:讓學生經歷“觀察-猜想-歸納-驗證”的數學過程,并從中體會數形結合及從特殊到一般的數學思想。培養學生觀察、比較、分析、推理的能力。

情感態度與價值觀:通過介紹我國古代在研究勾股定理方面取得的偉大成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感,在探索問題的過程中,培養學生的合作交流意識和探索精神。

3.重點和難點

勾股定理的學習是建立在掌握一般三角形的性質、直角三角形以及三角形全等的基礎上, 是直角三角形性質的拓展。本節課主要是對勾股定理的探索和勾股定理的證明。勾股定理的證明方法很多,本節課介紹的是等積法。通過本節課的教學,引領學生從不同的角度發現問題、用多樣化策略解決問題,從而提高學生分析、解決問題的能力。

因此本節課的重點:是勾股定理的發現、驗證和應用。

八年級學生已初步具備幾何的觀察能力和說理能力,也有了一定的空間想象和動手操作能力,但是他們的推理能力較弱、抽象思維能力不足。而本節課采用的是等積法證明。由于學生之前沒有接觸過等積法證明,他們對這種證明方法感到很陌生,尤其是覺得推理根據不明確,不象證明,沒有教師的啟發引領,學生不容易獨立想到。

因此本節課的難點:是用拼圖方法、面積法證明勾股定理。

(二)學情分析

八年級學生已初步具有幾何圖形的觀察,幾何證明的理論思維能力。希望老師預設便于他們進行觀察的幾何環境,給他們發表自己見解和表現自己才華的機會,希望老師滿足他們的創造愿望,讓他們實際操作,使他們獲得施展自己創造才能的機會。

(三)說教學方法

數學是一門培養人的思維,發展人的思維的重要學科,因此,在教學中,要展現獲取知識和方法的思維過程, 針對八年級學生的知識結構和心理特征,本節課采取引導探索法,由淺入深,由特殊到一般地提出問題。以導為主,采用設疑的形式,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。使學生得到獲得新知的成功感受,從而激發學生鉆研新知。并利用教具與多媒體進行教學。

(四)說學習方法

我們常說:“現代的文盲不是不識字的人, 而是沒有掌握學習方法的人”, 因而在教學中要特別重視學法的指導, 我采用了如下的學法指導:

在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養學生動手、動腦、動口的能力,使學生真正成為學習的主體。

(五)說教學過程

根據學生的認知規律和學習心理,本節課分六個活動進行學習,為了擴大課堂容量節省時間提高課堂效率,擬采用多媒體教學。

【活動1】:(多媒體展示)欣賞圖片 了解歷史

第一幅圖片配上文字說明。

設計意圖:這樣的導入富有科學特色和濃郁的數學氣息,激起學生強烈的興趣和求知欲。

第二幅圖片為20xx年在我國北京召開的第24屆國際數學家大會的場景,值得一提的是這次大會的會徽,為著名的趙爽弦圖。

設計意圖:在學生欣賞趙爽弦圖的過程中,進行愛國主義教育,可以讓他們充分體會到我國古代在數學研究方面取得的偉大成就,從而激發學生的愛國熱情和民族自豪感。

第三幅圖片為介紹古代勾和股。

設計意圖:簡單介紹勾股定理的歷史,引出勾股定理這一課題。

學生,讀一讀和觀察。

【活動2】:探索勾股定理

首先講述畢達哥拉斯到朋友家做客的故事。(多媒體展示)

然后提出兩個問題,讓學生沿著畢達哥拉斯的足跡去探尋勾股定理。

{問題一}:在圖中你能發現那些基本圖形?

{問題二}:與等腰直角三角形相鄰的正方形面積之間有怎樣的關系?

(多媒體展示)探究一

{問題三}:如圖,每個小方格的面積為1個單位,你能寫出正方形A、B、C的面積嗎?

{問題四}:由此你可以得出等腰直角三角形三邊存在著一種怎樣特殊的數量關系嗎?

學生在獨立探究的基礎上觀察圖片,計算面積,分組交流, 猜想和歸納。

教師參與學生小組活動,指導,傾聽學生交流。針對不同認識水平的學生,引導其用不同的方法得出大正方形的面積。在計算C的面積時可能有一定的難度,此時就要用到數學當中常見的割補法。因此需要教師的引導。

設計意圖:通過講傳說故事來激發學生學習興趣,引導學生進入學習狀態。學生會很積極的投入到探索這個問題的實踐中。讓學生并且嘗試了從不同角度尋求解決問題的有效方法,并通過對方法的反思,獲得解決問題的經驗。

“問題是思維的起點”,通過層層設問,引導學生發現新知。

(多媒體展示)探究二

{問題五}:等腰直角三角形三邊具有這樣的特殊關系,那么一般的直角三角形呢?如圖,每個小方格的面積為1個單位,你能寫出正方形A、B、C的面積嗎?

將一般的直角三角形放入到網格中,并使得直角三角形的兩條直角邊為正整數,讓學生去計算圖1和圖2中六個正方形的面積。關注學生能否用不同的方法得到大正方形的面積。

學生計算,觀察,猜想,語言表達猜想結論。

教師參與學生小組活動,指導,傾聽學生交流。針對不同認識水平的學生,引導其用不同的方法得出大正方形的面積。在計算C的面積時可能有一定的難度,此時又用到數學當中常見的割補法。因此需要教師的引導。

設計意圖:學生通過探究A、B、C三個正方形之間的面積關系,進而發現、猜想勾股定理,并用自己的語言表達出來。這樣的設計滲透了從特殊到一般的數學思想。發揮學生的主體作用,培養學生類比遷移能力及探索問題的能力,使學生在相互欣賞,爭辯,互助中得到提高。

(多媒體展示)猜想:

如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a2 b2=c2。

即直角三角形兩直角邊的平方和等于斜邊的平方。

{問題六}:是不是所有的直角三角形都有這樣的特點呢?

【活動3】:證明勾股定理

師:這就需要我們對一個一般的直角三角形進行證明。到目前為止,對這個命題的證明方法已有幾百種之多。下面我們就來看一看我國數學家趙爽是怎樣證明這個命題的。

{問題七}:請同學們拿出課前準備好的四個全等的直角三角形,記三邊分別為a,b,c,然后拼一拼、擺一擺,看看能否得到一個含有以斜邊c為邊長的正方形?

學生獨立思考的基礎上以小組為單位,用準備好的四個全等直角三角形動手拼接。學生展示分割,拼接的過程。

教師深入小組參與活動,傾聽學生的交流,幫助指導學生完成拼圖活動。并請小組代表到黑板演示拼圖過程,鼓勵學生敢于發表自己的見解。

設計意圖:通過這些實際操作,調動學生思維積極性,同時使學生對定理的理解更加深刻,學生能夠進一步加深對數形結合的理解,拼圖也會產生感性認識,也為論證勾股定理做好準備。

{問題八}:它們的面積分別怎樣表示?它們有什么關系呢?

(多媒體展示)拼接圖,面積計算

學生觀察,計算,小組討論。

在計算過程中,我重點在于引導學生分析圖中面積之間的關系,得出結論:大正方形的面積= 4個全等的直角三角形的面積 小正方形的面積,從而運用等積法證明勾股定理。(這樣,既突破了難點,讓學生感受到用等積法證明勾股定理的奧妙。)

設計意圖:給學生充分的時間和空間參與到數學活動中來,并發揮他們的主觀能動性,可以進一步提高學生的學習興趣。利用分組討論,加強學生的合作意識。

師:我們現在通過推理證實了我們的猜想的正確性,經過證明被確認正確的命題叫做定理。猜想與直角三角形的邊有關,我國把它稱為勾股定理?!摆w爽弦圖”表現了我國古人對數學的鉆研精神和聰明才智,它是我古代數學的驕傲。正因如此,這個圖案被選為20xx年在北京召開的國際數學大會的會徽。

【活動4】:應用勾股定理(多媒體展示)

(小組選擇,采用競答方式)

填空

P的面積= ,

AB= X=

BC=

BC=

2、求下列圖中表示邊的未知數x、y、z的值。

3求下列直角三角形中未知邊的長:

設計意圖:首先是幾道填空題和勾股定理的直接應用,這幾道題既有類似又有不同,通過變式訓練,強調應用勾股定理時應注意的問題。一是勾股定理要應用于直角三角形當中,二是要注意哪一條邊為斜邊。

4、求出下列直角三角形中未知邊的長度。

設計意圖:規范解題過程。

5、小明的媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你能解釋這是為什么嗎?(我們通過所說的29英寸或74厘米的電視機,是指其屏幕對角線的長度。)

設計意圖:這是一道和學生生活密切相關的應用題,讓學生充分體會到數學是來源于生活,應用于生活。

【活動5】:總結勾股定理(多媒體展示)

1.這節課你的收獲是什么?

2.理解“勾股定理”應該注意什么問題?

3.你覺得“勾股定理”有用嗎?

學生談談這節課的收獲是什么,讓學生暢所欲言。

教師進行補充,總結,為下節課做好鋪墊。

設計意圖:通過小結為學生創造交流的空間,調動學生的積極性,即引導學生培養學生從面積的角度理解勾股定理,又從能力,情感,態度等方面關注學生的整體感受。

【活動6】:布置作業(多媒體展示)

1.閱讀教材第71頁的閱讀與思考-----《勾股定理的證明》。

2.收集有關勾股定理的證明方法,下節展示交流。

3.做一棵奇妙的勾股樹(選做)

設計的意圖:給學生留有繼續學習的空間和興趣。

(六)說教學反思

本課意在創設愉悅和諧的樂學氣氛,始終面向全體學生“以學生的發展為本” 的教育理念,課堂教學充分體現學生的主體性,給學生留下最大化的思維空間。注重數學思想方法的滲透,整個勾股定理的探索、發現、證明都著意滲透數形結合,又從一般到特殊,從特殊回歸到一般的數學思想方法。重視數學史教育,激發學生的愛國情感。數學問題生活化,用數學知識解決生活中的實際問題,關鍵在于把生活問題轉化為數學問題,讓生活問題數學化,然后才能得以解決。在這個過程中,很多時候需要老師幫助學生去理解、轉化,而更多時候需要學生自己去探索、嘗試,并在失敗中尋找成功的途徑。教學中,如果能讓學生自己反思答案與方法的合理性,那么效果會更好了。

板書設計:

18.1 勾股定理

勾股定理:

如果直角三角形兩直角邊分別為a,b,

斜邊為c,那么a2 b2=c2

勾股定理思想總結 · 第2篇

教學目標:

一知識技能

1.理解勾股定理的逆定理的證明方法和證明過程;

2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是直角三角形;

二數學思考

1.通過勾股定理的逆定理的探索,經歷知識的發生發展與形成的過程;

2.通過三角形三邊的數量關系來判斷三角形的形狀,體驗數形結合法的應用.

三解決問題

通過勾股定理的逆定理的證明及其應用,體會數形結合法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題.

四情感態度

1.通過三角形三邊的數量關系來判斷三角形的形狀,體驗數與形的內在聯系,感受定理與逆定理之間的和諧及辯證統一關系;

2.在探究勾股定理的逆定理的證明及應用的活動中,通過一系列富有探究性的問題,滲透與他人交流合作的意識和探究精神.

教學重難點:

一重點:勾股定理的逆定理及其應用.

二難點:勾股定理的逆定理的證明.

教學方法

啟發引導分組討論合作交流等。

教學媒體

多媒體課件演示。

教學過程:

一復習孕新,引入課題

問題:

(1) 勾股定理的內容是什么?

(2) 求以線段ab為直角邊的直角三角形的斜邊c的長:

① a=3,b=4

② a=2.5,b=6

③ a=4,b=7.5

(3) 分別以上述abc為邊的三角形的形狀會是什么樣的呢?

二動手實踐,檢驗推測

1.把準備好的一根打了13個等距離結的繩子,按3個結4個結5個結的長度為邊擺放成一個三角形,請觀察并說出此三角形的形狀?

學生分組活動,動手操作,并在組內進行交流討論的基礎上,作出實踐性預測.

教師深入小組參與活動,并幫助指導部分學生完成任務,得出勾股定理的逆命題.在此基礎上,介紹:古埃及和我國古代大禹治水都是用這種方法來確定直角的.

2.分別以2.5cm6cm6.5cm和4cm7.5cm8.5cm為三邊畫出兩個三角形,請觀察并說出此三角形的形狀?

3.結合三角形三邊長度的平方關系,你能猜一猜三角形的三邊長度與三角形的形狀之間有怎樣的關系嗎?

三探索歸納,證明猜想

問題

1.三邊長度分別為3 cm4 cm5 cm的三角形與以3 cm4 cm為直角邊的直角三角形之間有什么關系?你是怎樣得到的?

2.你能證明以2.5cm6cm6.5cm和4cm7.5cm8.5cm為三邊長的三角形是直角三角形嗎?

3.如圖18.2-2,若△ABC的三邊長

滿足

,試證明△ABC是直角三角形,請簡要地寫出證明過程.

教師提出問題,并適時誘導,指導學生完成問題3的證明.之后,歸納得出勾股定理的逆定理.

四嘗試運用,熟悉定理

問題

1例1:判斷由線段

組成的三角形是不是直角三角形:

(1)

(2)

2三角形的兩邊長分別為3和4,要使這個三角形是直角三角形,則第三條邊長是多少?

教師巡視,了解學生對知識的掌握情況.

特別關注學生在練習中反映出的問題,有針對性地講解,學生能否熟練地應用勾股定理的逆定理去分析和解決問題

五類比模仿,鞏固新知

1.練習:練習題13.

2.思考:習題18.2第5題.

部分學生演板,剩余學生在課堂練習本上獨立完成.

小結梳理,內化新知

六1.小結:教師引導學生回憶本節課所學的知識.

2.作業:

(1)必做題:習題18.2第1題(2)(4)和第3題;

(2)選做題:習題18.2第46題.

勾股定理思想總結 · 第3篇

一、說教材

本課時是華師大版八年級(上)數學第14章第二節內容,是在掌握勾股定理的基礎上對勾股定理的應用之一。 勾股定理是我國古數學的一項偉大成就。勾股定理為我們提供了直角三角形的三邊間的數量關系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據,也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應用于數學和實際生活的各個方面。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析,使學生獲得較為直觀的印象,通過聯系和比較,了解勾股定理在實際生活中的廣泛應用。 據此,制定教學目標如下:

1、知識和方法目標:通過對一些典型題目的思考,練習,能正確熟練地進行勾股定理有關計算,深入對勾股定理的理解。

2、過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的。

3、情感與態度目標:感受數學在生活中的應用,感受數學定理的美。

教學重點:勾股定理的應用。

教學難點:勾股定理的正確使用。

教學關鍵:在現實情境中捕抓直角三角形,確定好直角三角形之后,再應用勾股定理。

二、說教法和學法

1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

2、切實體現學生的主體地位,讓學生通過觀察,分析,討論,操作,歸納理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

3、通過演示實物,引導學生觀察,操作,分析,證明,使學生獲得新知的成功感受,從而激發學生鉆研新知的欲望。

三、教學程序

本節內容的教學主要體現在學生的動手,動腦方面,根據學生的認知規律和學習心理,教學程序設置如下:

一、回顧問:

勾股定理的內容是什么? 勾股定理揭示了直角三角形三邊之間的關系,今天我們來學習這個定理在實際生活中的應用。

二、新授課例

1、如圖所示,有一個圓柱,它的高AB等于4厘米,底面周長等于20厘米,在圓柱下底面的A點有一只螞蟻,它想吃到上底面與A點相對的C點處的食物,沿圓柱側面爬行的最短路線是多少?(課本P57圖14.2.1)

①學生取出自制圓柱,,嘗試從A點到C點沿圓柱側面畫出幾條路線。思考:那條路線最短?

②如圖,將圓柱側面剪開展成一個長方形,從A點到C點的最短路線是什么?你畫得對嗎?

③螞蟻從A點出發,想吃到C點處的食物,它沿圓柱側面爬行的最短路線是什么?

思路點撥:引導學生在自制的圓柱側面上尋找最短路線;提醒學生將圓柱側面展開成長方形,引導學生觀察分析發現“兩點之間的所有線中,線段最短”。 學生在自主探索的基礎上興趣高漲,氣氛異常的活躍,他們發現螞蟻從A點往上爬到B點后順著直徑爬向C點爬行的路線是最短的!我也意外的發現了這種爬法是正確的,但是課本上是順著側面往上爬的,我就告訴學生:“課本中的圓柱體是沒有上蓋的”。只有這樣課本上的解答才算是完全正確的。例2.(課本P58圖14.2.3)

思路點撥:廠門的寬度是足夠的,這個問題的關鍵是觀察當卡車位于廠門正中間時其高度是否小于CH,點D在離廠門中線0.8米處,且CD⊥AB, 與地面交于H,尋找出Rt△OCD,運用勾股定理求出2.3m,CD= = =0.6,CH=0.6+2.3=2.9>2.5可見卡車能順利通過 。詳細解題過程看課本 引導學生完成P58做一做。

三、課堂小練

1、課本P58練習第1,2題。

2、探究: 一門框的尺寸如圖所示,一塊長3米,寬2.2米的薄木板是否能從門框內通過?為什么?

四、小結

直角三角形在實際生活中有更為廣泛的應用希望同學們能緊緊抓住直角三角形的性質,學透勾股定理的具體應用,那樣就能很輕松的解決現實生活中的許多問題,達到事倍功半的效果。

五、布置作業

課本P60習題14.2第1,2,3題。

勾股定理思想總結 · 第4篇

知識技能:了解勾股定理的文化背景,體驗勾股定理的探索過程.

數學思考:在勾股定理的探索過程中,發展合情推理能力,體會數形結合的思想. 解決問題:1.通過拼圖活動,體驗數學思維的嚴謹性,發展形象思維.

2.在探究活動中,學會與人合作并能與他人交流思維的過程和探究結果.

情感態度:1.通過對勾股定理歷史的了解,感受數學文化,激發學習熱情.

2.在探究活動中,體驗解決問題方法的多樣性,培養學生的合作交流意識和探索精神.

勾股定理思想總結 · 第5篇

一、教材分析

勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。

據此,制定教學目標如下:

1、理解并掌握勾股定理及其證明。

2、能夠靈活地運用勾股定理及其計算。

3、培養學生觀察、比較、分析、推理的能力。

4、通過介紹中國古代勾股方面的成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。

教學重點:勾股定理的證明和應用。

教學難點:勾股定理的證明。

二、教法和學法

教法和學法是體現在整個教學過程中的,本課的教法和學法體現如下特點:

1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發學生鉆研新知的欲望。

三、教學程序

本節內容的教學主要體現在學生動手、動腦方面,根據學生的認知規律和學習心理,教學程序設計如下:

(一)創設情境 以古引新

1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發學生求知欲。

2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態。

3、板書課題,出示學習目標。

(二)初步感知 理解教材

教師指導學生自學教材,通過自學感悟理解新知,體現了學生的自主學習意識,鍛煉學生主動探究知識,養成良好的自學習慣。

(三)質疑解難 討論歸納

1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發學生的表現欲。

2、教師引導學生按照要求進行拼圖,觀察并分析;

(1)這兩個圖形有什么特點?

(2)你能寫出這兩個圖形的面積嗎?

(3)如何運用勾股定理?是否還有其他形式?

這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

(四)鞏固練習 強化提高

1、出示練習,學生分組解答,并由學生總結解題規律。課堂教學中動靜結合,以免引起學生的疲勞。

2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。

(五)歸納總結 練習反饋

引導學生對知識要點進行總結,梳理學習思路。分發自我反饋練習,學生獨立完成。

本課意在創設愉悅和諧的樂學氣氛,優化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創新精神和實踐能力得到培養。

勾股定理說課稿 篇4

一、勾股定理是我國古數學的一項偉大成就。

勾股定理為我們提供了直角三角形的三邊間的數量關系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據,也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應用于數學和實際生活的各個方面。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析,使學生獲得較為直觀的印象,通過聯系和比較,了解勾股定理在實際生活中的廣泛應用。 據此,制定教學目標如下:

1、知識和方法目標:通過對一些典型題目的思考,練習,能正確熟練地進行勾股定理有關計算,深入對勾股定理的理解。

2、過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的。

3、情感與態度目標:感受數學在生活中的應用,感受數學定理的美。

教學重點:勾股定理的應用。 教學難點:勾股定理的正確使用。

教學關鍵:在現實情境中捕抓直角三角形,確定好直角三角形之后,再應用勾股定理。

二、說教法和學法

1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

2、切實體現學生的主體地位,讓學生通過觀察,分析,討論,操作,歸納理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

3、通過演示實物,引導學生觀察,操作,分析,證明,使學生獲得新知的成功感受,從而激發學生鉆研新知的欲望。

三、教學程序

本節內容的教學主要體現在學生的動手,動腦方面,根據學生的認知規律和學習心理,教學程序設置如下: 回顧問:勾股定理的內容是什么? 勾股定理揭示了直角三角形三邊之間的關系,今天我們來學習這個定理在實際生活中的應用。

勾股定理思想總結 · 第6篇

《勾股定理》說課稿1<\/p>

一、教材分析

(一)教材地位:這節課是九年制義務教育初級中學教材北師大版七年級第二章第一節《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

(二)教學目標:

知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題.

過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想.

情感態度與價值觀:激發學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創造,體驗數學的美感,從而了解數學,喜歡數學.

(三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

教學難點:用面積法(拼圖法)發現勾股定理。

突出重點、突破難點的辦法:發揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解.

二、教法與學法分析:

學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠.另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

教法分析:結合七年級學生和本節教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式,選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人.

三、教學過程設計

1.創設情境,提出問題

2.實驗操作,模型構建

3.回歸生活,應用新知

4.知識拓展,鞏固深化

5.感悟收獲,布置作業

創設情境提出問題

圖片欣賞勾股定理數形圖1955年希臘發行美麗的勾股樹20xx年國際數學的一枚紀念郵票大會會標

設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值.

某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環節.

二、實驗操作模型構建

問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?

設計意圖:這樣做利于學生參與探索,利于培養學生的語言表達能力,體會數形結合的思想.

問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?

設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高.

通過以上實驗歸納總結勾股定理.

設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養學生抽象、概括的能力,同時發揮了學生的主體作用,體驗了從特殊——一般的認知規律.

三.回歸生活應用新知

讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心.

四、知識拓展鞏固深化

基礎題,情境題,探索題.

設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發展.知識的運用得到升華.

基礎題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?

設計意圖:這道題立足于雙基.通過學生自己創設情境,鍛煉了發散思維.

情境題:小明媽媽買了一部29英寸(74厘米)的電視機.小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎?

設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。

探索題:做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發展空間想象能力.

五、感悟收獲布置作業:

這節課你的收獲是什么?

作業:

1、課本習題2.1

2、搜集有關勾股定理證明的資料.

板書設計探索勾股定理

如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

設計說明:

1.探索定理采用面積法,為學生創設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法.

2.讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平.

《勾股定理》說課稿2<\/p>

各位專家領導:

上午好!今天我說課的課題是《勾股定理》。

一、教材分析:

本節內容在全書和章節的地位。

這節課是九年制義務教育課程標準實驗教科書,八年級第十九章第二節“勾股定理”第一課時。勾股定理是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形的主要依據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯系比較,理解勾股定理,以便于正確的進行運用。

三維教學目標:

1、知識與能力目標。

(1)理解并掌握勾股定理的內容和證明,能夠靈活運用勾股定理及其計算;

(2)通過觀察分析,大膽猜想,并探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。

2、過程與方法目標。

在探索勾股定理的過程中,讓學生經歷“觀察-猜想-歸納-驗證”的數學思想,并體會數形結合和從特殊到一般的思想方法。

3、情感態度與價值觀。

通過介紹中國古代勾股方面的成就,激發學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養學生的民族自豪感和鉆研精神。

教學重點、難點:

1、教學重點:勾股定理的證明與運用

2、教學難點:用面積法等方法證明勾股定理

3、難點成因:

對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎上,大膽猜想數學結論,而這需要學生具備一定的分析、歸納的思維方法和運用數學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。

4、突破措施:

(1)創設情景,激發思維:

創設生動、啟發性的問題情景,激發學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態下進入學習過程;

(2)自主探索,敢于猜想:

充分讓自己動手操作,大膽猜想數學問題的結論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協作,從而形成生動的課堂環境;

(3)張揚個性,展示風采:

實行“小組合作制”,各小組中自己推薦一人擔任“發言人”,一人擔任“書記員”,在討論結束后,由小組的“發言人”匯報本小組的討論結果,并可上臺利用“多媒體視頻展示臺”展示本組的優秀作品,其他小組給予評價。這樣既保證討論的有效性,也調動了學生的學習積極性。

二、教法與學法分析:

1、教法分析:

數學是一門培養人的思維,發展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結構和心理特征,本節課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神?;镜慕虒W程序是“創設情景-動手操作-歸納驗證-問題解決-課堂小結-布置作業”六個方面。

2、學法分析:

新課標明確提出要培養“可持續發展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。

三、教學過程設計:

創設情景:

多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

問題的設計有一定的挑戰性,目的是激發學生的探究欲望,老師要注意引導學生將實際問題轉化為數學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數學來源于生活”,學習數學是為更好“服務于生活”。

動手操作:

1、課件出示課本P99圖19.2.1:

觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結論?

學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導學生發現SP+SQ=SR,從而讓學生通過正方形的面積之間的關系發現:對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則 AC2+BC2=AB2。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。

2、緊接著讓學生思考:

上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出P100圖 19.2.2。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發現:對于一般的以整數為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數學思想及學習過程,提高學生的分析問題和解決問題的能力。

3、再問:

當邊長不為整數的直角三角形是否也存在這一結論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數的直角三角形,讓學生計算。這樣設計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結論更具有一般性。

歸納驗證:

1、歸納:

通過動手操作、合作交流,探索邊長為整數的等腰直角三角形到一般的直角三角形,再到邊長為小數的直角三角形的兩直角邊與斜邊的關系,讓學生在整個學習過程中感受學數學的樂趣,,使學生學會“文字語言”與“數學語言”這兩種表達方式,各小組“發言人”的積極表現,整堂課充分發揮學生的主體作用,真正獲取知識,解決問題。

2、驗證:

先后三次驗證“勾股定理”這一結論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數形結合和從特殊到一般的數學思想,而且這一過程也有利于培養學生嚴謹、科學的學習態度。

問題解決:

1、讓學生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。

2、自學課本P101例1,然后完成P102練習。

課堂小結:

1、小組成員從內容、數學思想方法、獲取知識的途徑進行小結,后由“發言人”匯報,小組間要互相比一比,看看哪一個小組表現最佳。

2、教師用多媒體介紹“勾股定理史話”。

(1)《周髀算徑》:西周的商高發現了“勾三股四弦五”這一規律。

(2)康熙數學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創。

3、目的:對學生進行愛國主義教育,激勵學生奮發向上。

布置作業:

課本P104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯系。

以上內容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領導對本次說課提出寶貴的意見,謝謝!

《勾股定理》說課稿3<\/p>

本節課設計力求讓學生參與知識的發現過程,體現以學生為主體,以促進學生發展為本的教學理念,變知識的傳授者為學生自主探求知識的引導者、指導者、合作者。并利用多媒體,直觀教具演示,營造一個聲像同步,能動能靜的教學情境,給學生提供一個探索的空間,促使學生主動參與,親身體驗勾股定理的探索證明過程,從而鍛煉思維、激發創造,優化課堂教學。努力做到有傳統的教學課堂像實驗課堂轉變,使學生真正成為學習的主人,培養了學生的素質能力,達到了良好的教學效果。

創設情境,引入新課

課前首先讓學生閱讀趙爽的弦圖相關知識讓他們體會中國古代科學的發達。在課堂上緊密結合前面已學的知識進行導入。如提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?你還記得三角形的三邊遵循什么規律嗎?等等一系列的問題激起學生學生的熱情和求知欲,然后順利進入探究。本節我們就來學習一下直角三角形的三條邊除具備前面的性質外還有什么新的特征。

引導學生,探究新知

①初步感知定理:這一環節我選擇了教材的圖片,講述畢達哥拉斯到朋友家做客時發現用磚鋪成的地面,其中含有直角三角形三邊的數量關系,創設感知情境,提出問題,現在請同學觀察,看看有什么發現?使問題更形象、具體。

②提出猜想:在活動1的基礎上,學生已發現一些規律,進一步通過活動2進行看一看、填一填、想一想、議一議、做一做,讓學生感受不只是等腰直角三角形才具有這樣的性質,學生再由淺到深,由特殊到一般的提出問題,啟發學生得出猜想,直角三角形的兩直角邊的平分和等于斜邊的平方。

③證明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明:通過活動3我充分引導學生利用直觀教具,進行拼圖實驗,在動手操中放手讓學生思考、討論、合作、交流、探究問題的多種方法。,并對學生的做法給予表揚,使學生在學習過程中,感受到自我創造的快樂,從而分散了教學難點,發現了利用面積相等去證明勾股定理的方法。

④總結定理:讓學生自己總結,不完善之處由教師補充,在前面探究活動的基礎上,學生容易得出直角三角形的三邊數量關系即勾股定理。

反饋訓練,鞏固新知

學生對所學的知識是否掌握了,達到了什么程度?為了檢測學生對本課的達成情況和加強對學生能力的培養,我設計了一組坡有難度的練習題。

歸納總結,深化新知

本節課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的問題是什么?……

通過小結,使學生進一步明確掌握教學目標,使知識成為體系。

布置作業。拓展新知

讓學生收集有關勾股定理的證明方法,下節課展示、交流。使本節知識得到拓展、延伸,培養了學生能力和思維的深刻性,讓學生感受數學深厚的文化底蘊。

板書設計,明確新知

《勾股定理》說課稿4<\/p>

課題:“勾股定理”第一課時

內容:教材分析、教學過程設計、設計說明

一、教材分析

(一)教材所處的地位

這節課是九年制義務教育課程標準實驗教科書八年級第一章第一節探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

(二)根據課程標準,本課的教學目標是:

1、能說出勾股定理的內容。

2、會初步運用勾股定理進行簡單的計算和實際運用。

3、在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數學思想,并體會數形結合和特殊到一般的思想方法。

4、通過介紹勾股定理在中國古代的研究,激發學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發奮學習。

(三)本課的教學重點:探索勾股定理

本課的教學難點:以直角三角形為邊的正方形面積的計算。

二、教法與學法分析:

教法分析:針對初二年級學生的知識結構和心理特征,本節課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業六部分。

學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養學生動手、動腦、動口的能力,使學生真正成為學習的主體。

三、教學過程設計

(一)提出問題:

首先創設這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?問題設計具有一定的挑戰性,目的是激發學生的探究欲望,教師引導學生將實際問題轉化成數學問題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問題。學生會感到困難,從而教師指出學習了今天這一課后就有辦法解決了。這種以實際問題為切入點引入新課,不僅自然,而且反映了數學來源于實際生活,數學是從人的需要中產生這一認識的基本觀點,同時也體現了知識的發生過程,而且解決問題的過程也是一個“數學化”的過程。

(二)實驗操作:

1、投影課本圖1—1,圖1—2的有關直角三角形問題,讓學生計算正方形A,B,C的面積,學生可能有不同的方法,不管是通過直接數小方格的個數,還是將C劃分為4個全等的等腰直角三角形來求等等,各種方法都應予于肯定,并鼓勵學生用語言進行表達,引導學生發現正方形A,B,C的面積之間的數量關系,從而學生通過正方形面積之間的關系容易發現對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。

2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形C的面積不易求出,可讓學生在預先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發現對于一般的以整數為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設計不僅有利于突破難點,而且為歸納結論打下了基礎,讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習及有幫助。

3、給出一個邊長為0.5,1.2,1.3,這種含小數的直角三角形,讓學生計算是否也滿足這個結論,設計的目的是讓學生體會到結論更具有一般性。

(三)歸納驗證:

1、歸納通過對邊長為整數的等腰直角三角形到一般直角三角形再到邊長含小數的直角三角形三邊關系的研究,讓學生用數學語言概括出一般的結論,盡管學生可能講的不完全正確,但對于培養學生運用數學語言進行抽象、概括的能力是有益的,同時發揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結論要好的多。

2、驗證為了讓學生確信結論的正確性,引導學生在紙上任意作一個直角三角形,通過測量、計算來驗證結論的正確性。這一過程有利于培養學生嚴謹、科學的學習態度。然后引導學生用符號語言表示,因為將文字語言轉化為數學語言是學習數學學習的一項基本能力。接著教師向學生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向學生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育。

(四)問題解決:

讓學生解決開頭的實際問題,前后呼應,學生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應用,數學是與實際生活緊密相連的。

(五)課堂小結:

主要通過學生回憶本節課所學內容,從內容、應用、數學思想方法、獲取新知的途徑方面先進行小結,后由教師總結。

(六)布置作業:

課本P6習題1.11,2,3,4一方面鞏固勾股定理,另一方面進一步體會定理與實際生活的聯系。另外,補充一道開放題。

四、設計說明

1、本節課是公式課,根據學生的知識結構,我采用的教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業六部分,這一流程體現了知識發生、形成和發展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想。

2、探索定理采用了面積法,引導學生利用實驗由特殊到一般再到更一般的對直角三角形三邊關系的研究,得出結論。這種方法是認識事物規律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質的形成有重要作用,對學生的終身發展也有一定的作用。

3、關于練習的設計,除兩個實際問題和課本習題以外,我準備設計一道開放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學生盡量地找出線段之間的關系。

4、本課小結從內容,應用,數學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結,又有方法的提煉,這樣對于學生學知識,用知識的意識是有很大的促進的。

《勾股定理》說課稿5<\/p>

一、教材分析

(一)教材地位與作用

勾股定理它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

(二)教學目標知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想。情感態度與價值觀:激發愛國熱情,體驗自己努力得到結論的成就感,體驗數學充滿探索和創造,體驗數學的美感,從而了解數學,喜歡數學。

(三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

教學難點:用面積法(拼圖法)發現勾股定理。

突出重點、突破難點的辦法:發揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。

二、教法與學法分析:

學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的能力。他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強。

教法分析:結合七年級學生和本節教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式,選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。

三、教學過程設計

1、創設情境,提出問題

2、實驗操作,模型構建

3、回歸生活,應用新知

4、知識拓展,鞏固深化

5、感悟收獲,布置作業

(一)創設情境提出問題

圖片欣賞:勾股定理數形圖xxxx年希臘發行。美麗的勾股樹20xx年國際數學的一枚紀念郵票。

設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值。

某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環節。

(二)實驗操作模型構建

問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?設計意圖:這樣做利于學生參與探索,利于培養學生的語言表達能力,體會數形結合的思想。

問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?

設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。

通過以上實驗歸納總結勾股定理。

設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養學生抽象、概括的能力,同時發揮了學生的主體作用,體驗了從特殊——一般的認知規律。

(三)回歸生活應用新知

讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心。

(四)知識拓展鞏固深化

基礎題,情境題,探索題。

設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發展。知識的運用得到升華。

基礎題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?

設計意圖:這道題立足于雙基。通過學生自己創設情境,鍛煉了發散思維。

情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。

探索題:做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發展空間想象能力。

(五)感悟收獲布置作業:這節課你的收獲是什么?

作業:

1、課本習題2、1

2、搜集有關勾股定理證明的資料。

板書設計

探索勾股定理

如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2、b2、c2。

設計說明:

1、探索定理采用面積法,為學生創設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法。

2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平。

《勾股定理》說課稿6<\/p>

今天我說課的課題是《勾股定理》。本課選自九年義務教育人教版八年級數學下冊第十八章第一節的第一課時。

一、教學背景分析

1、教材分析

本節課是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,通過20xx年國際數學家大會的會徽圖案,引入勾股定理,進而探索直角三角形三邊的數量關系,并應用它解決問題。學好本節不僅為下節勾股定理的逆定理打下良好基礎,而且為今后學習解直角三角形奠定基礎,在實際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質,是幾何中一個非常重要的定理,它揭示了直角三角形三邊之間的數量關系,將數與形密切地聯系起來,它有著豐富的歷史背景,在理論上占有重要的地位。

2、學情分析

通過前面的學習,學生已具備一些平面幾何的知識,能夠進行一般的推理和論證,但如何通過拼圖來證明勾股定理,學生對這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學生動手、動口、動腦,化難為易,深入淺出,讓學生感受學習知識的樂趣。

3、教學目標:

根據八年級學生的認知水平,依據新課程標準和教學大綱的要求,我制定了如下的教學目標:

知識與能力目標:了解勾股定理的發現過程,掌握勾股定理的內容,會用面積法證明勾股定理;培養在實際生活中發現問題總結規律的意識和能力.

過程與方法目標:通過創設情境,導入新課,引導學生探索勾股定理,并應用它解決問題,運用了觀察、演示、實驗、操作等方法學習新知。

情感態度價值觀目標:感受數學文化,激發學生學習的熱情,體驗合作學習成功的喜悅,滲透數形結合的思想。

4、教學重點、難點

通過分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實踐中有著廣泛應用。因此我確定本課的教學

重難點為探索和證明勾股定理.

二、教材處理

根據學生情況,為有效培養學生能力,在教學過程中,以創設問題情境為先導,運用直觀教具、多媒體等手段,激發學生學習興趣,調動學生學習積極性,并開展以探究活動為主的教學模式,邊設疑,邊講解,邊操作,邊討論,啟發學生提出問題,分析問題,進而解決問題,以達到突出重點,攻破難點的目的。

三、教學策略

1、教法

“教必有法,而教無定法”,只有方法恰當,才會有效。根據本課內容特點和八年級學生思維活動特點,我采用了引導發現教學法,合作探究教學法,逐步滲透教學法和師生共研相結合的方法。

2、學法

“授人以魚,不如授人以漁”,通過設計問題序列,引導學生主動探究新知,合作交流,體現學習的自主性,從不同層次發掘不同學生的不同能力,從而達到發展學生思維能力的目的,發掘學生的創新精神。

3、教學模式

根據新課標要求,要積極倡導自主、合作、探究的學習方式,我采用了創設情境——探究新知——反饋訓練的教學模式,使學生獲取知識,提高素質能力。

四、教學過程

(一)創設情境,引入新課

利用多媒體課件,給學生出示20xx年國際數學家大會的場面,通過觀察會徽圖案,提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?從現實生活中提出趙爽弦圖,激發學生學習的熱情和求知欲,同時為探索勾股定理提供背景材料,進而引出課題。

(二)引導學生,探究新知

1、初步感知定理:這一環節選擇教材的圖片,講述畢達哥拉斯到朋友家做客時發現用磚鋪成的地面,其中含有直角三角形三邊的數量關系,創設感知情境,提出問題:現在也請你觀察,看看有什么發現?教師配合演示,使問題更形象、具體。適當補充等腰直角三角形邊長為1、2時,所形成的規律,使學生再次感知發現的規律。

2、提出猜想:在活動1的基礎上,學生已發現一些規律,進一步通過活動2進行看一看,想一想,做一做,讓學生感受不只是等腰直角三角形才具有這樣的性質,使學生由淺到深,由特殊到一般的提出問題,啟發學生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。

3、證明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明.通過活動3,充分引導學生利用直觀教具,進行拼圖實驗,在動手操作中放手讓學生思考、討論、合作、交流,探究解決問題的多種方法,鼓勵創新,小組競賽,引入競爭,教師參與討論,與學生交流,獲取信息,從而有針對性地引導學生進行證法的探究,使學生創造性地得出拼圖的多種方法,并使學生在學習的過程中,感受到自我創造的快樂,從而分散了教學難點,發現了利用面積相等去證明勾股定理的方法。培養了學生的發散思維、一題多解和探究數學問題的能力。

4、總結定理:讓學生自己總結定理,不完善之處由教師補充。在前面探究活動的基礎上,學生很容易得出直角三角形的三邊數量關系即勾股定理,培養了學生的語言表達能力和歸納概括能力。

(三)反饋訓練,鞏固新知

學生對所學的知識是否掌握了,達到了什么程度?為了檢測學生對本課目標的達成情況和加強對學生能力的培養,設計一組有坡度的練習題:A組動腦筋,想一想,是本節基礎知識的理解和直接應用;B組求陰影部分的面積,建立了新舊知識的聯系,培養學生綜合運用知識的能力。C組議一議,是一道實際應用題型,給學生施展才智的機會,讓學生獨立思考后,討論交流得出解決問題的方法,增強了數學來源于實踐,反過來又作用于實踐的應用意識,達到了學以致用的目的。

(四)歸納小結,深化新知

本節課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的的問題是什么?通過小結,使學生進一步明確掌握教學目標,使知識成為體系。

(五)布置作業,拓展新知

讓學生收集有關勾股定理的證明方法,下節課展示、交流.使本節知識得到拓展、延伸,培養了學生能力和思維的深刻性,讓學生感受數學深厚的文化底蘊。

(六)板書設計,明確新知

本節課的板書設計分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點,層次清楚,便于學生掌握,為獲得知識服務。

《勾股定理》說課稿7<\/p>

一、教材分析

(一)教材地位

這節課是九年制義務教育初級中學教材北師大版八年級第一章第一節《探索勾股定理》第一課時,它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

(二)教學目標

知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題.

過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想.

情感態度與價值觀:激發學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創造,體驗數學的美感,從而了解數學,喜歡數學.

(三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

教學難點:用面積法(拼圖法)發現勾股定理。

突出重點、突破難點的辦法:發揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解.

二、教法與學法分析:

學情分析:八年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠.另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

教法分析:結合八年級學生和本節教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人.

三、教學過程設計

1.創設情境,提出問題

2.實驗操作,模型構建

3.回歸生活,應用新知

4.知識拓展,鞏固深化5.感悟收獲,布置作業

創設情境提出問題

圖片欣賞 勾股定理數形圖 1955年希臘發行 美麗的勾股樹 20xx年國際數學 的一枚紀念郵票 大會會標 設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值.

某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環節.

二、實驗操作模型構建

問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?

設計意圖:這樣做利于學生參與探索,利于培養學生的語言表達能力,體會數形結合的思想.

問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?

設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高.

通過以上實驗歸納總結勾股定理.

設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養學生抽象、概括的能力,同時發揮了學生的主體作用,體驗了從特殊—— 一般的認知規律.

三.回歸生活應用新知

讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心.

四、知識拓展鞏固深化

基礎題,情境題,探索題.

設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發展.知識的運用得到升華.

基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?

設計意圖:這道題立足于雙基.通過學生自己創設情境,鍛煉了發散思維.

情境題:小明媽媽買了一部29英寸(74厘米)的電視機.小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎?

設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。

探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發展空間想象能力.

五、感悟收獲布置作業: 這節課你的收獲是什么?

作業: 李景萍《探索勾股定理》第一課時說課稿 1、課本習題2.1 2、搜集有關勾股定理證明的資料.

板書設計 探索勾股定理

如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

李景萍《探索勾股定理》第一課時說課稿

設計說明::1.探索定理采用面積法,為學生創設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法.

2.讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平.

《勾股定理》說課稿8<\/p>

一、教材分析

(一)教材地位與作用

勾股定理它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

(二)教學目標 知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。 過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想。 情感態度與價值觀: 激發愛國熱情,體驗自己努力得到結論的成就感,體驗數學充滿探索和創造,體驗數學的美感,從而了解數學,喜歡數學。

(三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

教學難點:用面積法(拼圖法)發現勾股定理。

突出重點、突破難點的辦法:發揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。

二、教法與學法分析:

學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的.能力還有待加強.

教法分析:結合七年級學生和本節教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。

三、教學過程設計

1、創設情境,提出問題 2、實驗操作,模型構建 3、回歸生活,應用新知 4、知識拓展,鞏固深化5、感悟收獲,布置作業

創設情境提出問題

圖片欣賞 勾股定理數形圖 1955年希臘發行 美麗的勾股樹20xx年國際數學的一枚紀念郵票 大會會標

設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值。

某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?

設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環節。

問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系? 設計意圖:這樣做利于學生參與探索,利于培養學生的語言表達能力,體會數形結合的思想。

問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?

設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。

通過以上實驗歸納總結勾股定理。

設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養學生抽象、概括的能力,同時發揮了學生的主體作用,體驗了從特殊—— 一般的認知規律。

三。回歸生活應用新知

讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心。

四、知識拓展鞏固深化

基礎題,情境題,探索題。

設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發展。知識的運用得到升華。

基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?

設計意圖:這道題立足于雙基.通過學生自己創設情境 ,鍛煉了發散思維.

情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。

探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發展空間想象能力。

五、感悟收獲布置作業: 這節課你的收獲是什么?

作業:1、課本習題2、1

2、搜集有關勾股定理證明的資料。

板書設計 探索勾股定理

如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2?b2?c2

設計說明:1、探索定理采用面積法,為學生創設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法.

2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平。

《勾股定理》說課稿9<\/p>

尊敬的各位領導,各位老師:

大家好!今天我說課的內容是初中八年級數學人教版教材第十八章第一節《勾股定理》(第一課時),下面我分五部分來匯報我這節課的教學設計,這就是“教材分析”、“學情分析”、“教法選擇”、“學法指導”、“教學過程”。

一、教材分析

(一) 教材地位和作用

勾股定理是幾何中的重要定理之一,它揭示的是直角三角形中三邊的數量關系,將幾何圖形與數字聯系起來。它在數學的發展中起過重要的作用,在生產生活中有著廣泛的應用。而且它在其它自然學科中也常常用到。因此,這節課有著舉足輕重的地位。

(二)教學目標

根據新課程標準的要求和本課的特點,結合學生的實際情況,我確定了本課的教學目標:

1、知識與技能方面

了解勾股定理的文化背景,經歷探索勾股定理的過程,掌握直角三角形三邊之間的數量關系, 并能簡單應用。

2、過程與方法方面

經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,能感受到數學思考過程的條理性,發展數學的說理和簡單的推理的意識,和語言表達的能力,并體會數形結合和特殊到一般的思想方法。

3、情感態度與價值觀方面

(1)通過了解勾股定理的歷史,激發學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發奮學習。

(2) 通過研究一系列富有探 究性的問題,培養學生與他人交流、合作的意識和品質。

(三)教學重點難點

教學重點:掌握勾股定理,并能用它來解決一些簡單的問題。

教學難點:勾股定理的證明。

二、學情分析

我們班日常經常使用多媒體輔助教學。經過一年多的幾何學習,學生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學生解題思維能力比較高,能夠正確 歸納所學知識,通過學習小組討論交流,能夠形成解決問題的思路。 現在的學生已經厭倦教師單獨的說教方式,希望教師設計便于他們進行觀察的幾何環境,給他們自己探索、發表自己見解和表現自己才華的機會;更希望教師滿足他 們的創造愿望。

三、教法選擇

根據本節課的教學目標、教學內容以及學生的認知特點,結合我校的“當堂達標”教學模式,我在教法上采用引導發現法為主,并以分析法、討論法相結合。設計“ 觀察——討論—歸納”的教學方法,意在幫助學生通過自己動手實驗和直觀情景觀察,從實踐中獲取知識,并通過討論來深化對知識的理解。本節課采用了多媒體輔 助教學,能夠直觀、生動的反應圖形,增加課堂的容量,同時有利于突出重點、分散難點,增強教學形象性,更好的提高課堂效率。

四、學法指導:

為了充分體現《新課標》的要求,培養學生的觀察分析能力,邏輯思維能力,積累豐富的數學學習經驗,這節課主要采用觀察分析,自主探索與合作交流的學習方 法,使學生積極參與教學過程。在教學過程中展開思維,培養學生提出問題、分析問題、解決問題的能力,進一步體會觀察、類比、分析、從特殊到一般等數學思 想。借此培養學生動手、動腦、動口的能力,使學生真正成為學習的主人。

五、教學過程

根據《新課標》中“要引導學生投入到探索與交流的學習活動中”的教學要求,本節課的教學過程我是這樣設計的:

(一)創設情境,引入新課

一個設計合理的情境引入可以說在一定程度上決定著學生能否帶著興趣積極投入到本節課的學習中。為了體現數學源于生活,數學是從人的需要中產生的,學習數學的目的是為了用數學解決實際問題。我設計了以下題目:

星期日老師帶領全班同學去某山風景區游玩,同學們看到山勢險峻,查看景區示意圖得知:這座山主峰高約為900米,如圖:為了方便游人,此景區從主峰A處向地面B處架了一條纜車線路,已知山底端C處與地面B處相距1200米,

∠ACB=90° ,你能用所學知識算出纜車路線AB長應為多少?

答案是不能的。然后教師指出,通過這節課的學習,問題將迎刃而解。

設計意圖:以趣味性題目引入。從而設置懸念,激發學生的學習興趣。 教師引導學生把實際問題轉化為數學問題,這其中滲透了一種數學思想,對于學生也是一種挑戰,能激發學生探究的欲望,自然引出下面的環節。

緊接著出示本節課的學習目標:

1、了解勾股定理的文化背景,體驗勾股定理的探索過程。

2、掌握勾股定理的內容,并會簡單應用。

(二)勾股定理的探索

1、猜想結論

(1)探究一:等腰直角三角形三邊關系。

由課本64頁畢達哥拉斯的故事,探究等腰直角三角形三邊關系。結合課件中格點圖形的面積,學生自主探究,通過計算、討論、總結,得出結論:等腰直角三角形的斜邊的平方等于兩直角邊的平方和。

在此過程中,給學生充分的時間、觀察、比較、交流,最后通過活動讓學生用語言概括總結。

提問:等腰直角三角形有這樣的性質,其他的直角三角形也有這樣的性質嗎?

(2、)探究二:一般的直角三角形三邊關系。

在課件中的格點圖形中,利用面積,再次探究直角三角形的三邊關系。學生自主探究,通過計算、討論、總結,得出結論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。

設 計意圖:組織學生進行討論,在此基礎上教師引導學生從三邊的平方有何大小關系入手進行觀察。教師在多媒體課件上直觀地演示。通過學生自己探索、討論,由學 生自己得出結論。這樣,讓學生參與定理的再發現過程,他們通過自己觀察、計算所得出的定理,在心理產生自豪感,從而增強學生的學習數學的自信心。

2、證明猜想

目前世界上證明該勾股定理的方法有很多種,而我國古代數學家利用拼接、割補圖形,計算面積的思路提供了很多種證明方法,下面我們通過古人趙爽的方法進行證 明。學生分組活動,根據圖形的面積進行計算,推導出勾股定理的一般形式:a + b = c。即直角三角形兩直角邊的平方和等于斜邊的平方、

設計意圖:通過利用多媒體課件的演示,更直觀、形象的向學生介紹用拼接、割補圖形,計算面積的證明方法,使學生認識到證明的必要性、結論的確定性,感受到前人的偉大和智慧。

3、簡要介紹勾股定理命名的由來

我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數學家商高就提出,將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被記載于我國古代著名的數學著作《周髀算經》中、我國稱這個結論為“勾股定理”,西方畢達哥拉斯于公元前五世紀發現了勾股定理, 但他比商高晚出生五百多年。

設計意圖:對比以上事實對學生進行愛國主義教育,激勵他們奮發向上。

(三)勾股定理的應用

1、利用勾股定理,解決引入中的問題。體會數學在實際生活中的應用。

2、教學例1:課本66頁探究1

師生討論、分析: 木板的寬2、2米大于1米,所以橫著不能從門框內通過.

木板的寬2、2米大于2米,所以豎著不能從門框內通過.

因為對角線AC的長度最大,所以只能試試斜著 能否通過.

從而將實際問題轉化為數學問題.

提示:

(2)知道直角△ABC的那條邊?

(3)知道直角三角形兩條邊長求第三邊用什么方法呢?

設計意圖:此題是將實際為題轉化為數學問題,從中抽象出Rt△ABC,并求出斜邊A C的長。本例意在滲透實際問題和勾股定理的知識聯系。通過系列問題的設置和解決,旨在降低難度,分散難點,使難點予以突破,讓學生掌握勾股定理在具體問題中的應用,使學生獲得新知,體驗成功,從而增加學習興趣。

(四)、課堂練習習題18、1 1、5。 學生板演,師生點評。

設計意圖:通過練習使學生加深對勾股定理的理解,讓學生比較練習題和例題中條件的異同,進一步讓學生理解勾股定理的運用。

對學生提問:“通過這節課的學習有什么收獲?”

學生同桌間暢談自己的學習感受和體會,并請個別學生發言。

設計意圖:讓學生自己小結,活躍了氣氛,做到全員參與,理清了知識脈絡,強化了重點,培養了學生口頭表達能力。

(六)達標訓練與反饋

設計意圖:必做題較為簡單,要求全體學生完成;選作題有一點的難度,基礎較好的學生能夠完成,體現分層教學。

以上內容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”五個方面來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣 教”,讓學生人人參與,注重對學生活動的評價, 探索過程中,會為學生創設一個和諧、寬松的情境。希望得到各位專家領導的指導與指正,謝謝!

《勾股定理》說課稿10<\/p>

尊敬的各位評委:

您們好!我來自明光市張八嶺中學。今天我說課的課題是《勾股定理》。本課選自九年義務教育滬科版八年級下冊初中數學第十九章第一節的第一課時。

下面我從教學背景分析、教材處理、教學策略、教學流程方面對本課的設計進行說明。

一、教學背景分析

1、教材分析

本節課是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,通過一枚1955年由希臘發行的郵票上圖案的故事,引入勾股定理,進而探索直角三角形三邊的數量關系,并應用它解決問題。學好本節不僅為下節勾股定理的逆定理打下良好基礎,而且為今后學習解直角三角形奠定基礎,同時在實際生活中用途也很大。勾股定理是直角三角形的一條非常重要的性質,是幾何中一個非常重要的定理,它揭示了直角三角形三邊之間的數量關系,將數與形密切地聯系起來,它有著豐富的歷史背景,在理論上占有重要的地位。

2、學情分析

學生已經學習了有關三角形的一些知識,如三角形的三邊不等關系,三角形全等的判定等。也學過不少利用圖形面積來探求數式運算規律的例子,如探求乘法公式、單項式乘多項式法則、多項式乘多項式法則等。在學生這些原有的認知水平基礎上,探求直角三角形的又一重要性質——勾股定理。讓學生的知識形成知識鏈,讓學生已具有的數學思維能力得以充分發揮和發展。

3、教學目標:

根據八年級學生的認知水平,依據新課程標準和教學大綱的要求,我制定了如下的教學目標:

知識與技能:了解勾股定理的發現過程,掌握勾股定理的內容,會用面積法證明勾股定理;培養在實際生活中發現問題總結規律的意識和能力.

過程與方法:在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數學思想,并體會數形結合和從特殊到一般的思想方法。

情感態度價值觀:感受數學文化,激發學生學習的熱情,體驗合作學習成功的喜悅,滲透數形結合的思想。

4、教學重點、難點

通過研究分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實踐中有著廣泛應用。因此我確定本課的教學重點為勾股定理的證明與運用,教學難點為用面積法證明勾股定理

二、教材處理

根據學生情況,為有效培養學生能力,在教學過程中,我先以數學史中的一個有趣的故事來激發學生學習興趣,運用直觀教具、多媒體等手段,調動學生學習積極性,并開展以探究活動為主的教學模式,邊設疑,邊講解,邊操作,邊討論,啟發學生提出問題,分析問題,進而解決問題,以達到突出重點,攻破難點的目的。

三、教學策略

1、教法

“教必有法,而教無定法”,只有方法恰當,才會有效。根據本課內容特點和八年級學生思維活動特點,我采用了引導發現教學法,合作探究教學法,逐步滲透教學法和師生共研相結合的方法。

2、學法

“授人以魚,不如授人以漁”,通過設計問題序列,引導學生主動探究新知,合作交流,體現學習的自主性,從不同層次發掘不同學生的不同能力,從而達到發展學生思維能力的目的,發掘學生的創新精神。

3、教學手段

充分利用多媒體,提高教學效率,增大教學容量;通過多媒體演示,激發學生學習興趣,啟迪學生思維的發展;通過直觀教具,進行動手操作,調動學生學習的積極性,培養學生思維的廣闊性。

4、教學模式

根據新課標要求,要積極倡導自主、合作、探究的學習方式,我采用了創設情境——探究新知——反饋訓練的教學模式,使學生獲取知識,提高素質能力。

四、教學流程

我利用多媒體課件,給學生展示一枚1955年由希臘發行的郵票,并問學生是否想聽這枚郵票背后的故事?

在20xx多年前,古希臘有一位著名的數學家——畢達哥拉斯,有次參加一位政要人物邀請的餐會,這位主人的宮殿般豪華的餐廳鋪著正方形的美麗的大理石地磚,由于大餐遲遲不上桌,這些饑腸轆轆的貴賓頗有怨言,但這位善于觀察和理解的數學家卻凝視腳下這些排列規則,美麗的方形瓷磚,畢達哥拉斯不只是欣賞瓷磚的美麗,而是想到它們和“數”之間的關系,于是他拿了畫筆并且蹲在地板上,選了一塊瓷磚以它的對角線為邊畫了一個大正方形,同學們,你們知道他發現了什么嗎?

對學生的回答進行引導,梳理,總結,可以得到有關三個正方形面積的結論。進而引入本節課的標題:19.1 勾股定理(板書)

(以小故事激發學生的興趣,隨后以開放式的問題形式,讓學生觀察猜想。本環節體現了人文關懷,并兼顧了教材中的探究,為下一步勾股定理的證明埋下伏筆。)

1、初步感知定理:

(1)用什么方法來探求:勾股定理即直角三角形三邊數量關系呢?

回憶我們曾經利用圖形面積探索過數學公式,大家還記得在哪用過嗎?

課件展示:平方差公式、完全平方公式、單項式乘多項式、多項式乘多項式的引出.

今天,讓我們試一試通過計算圖形的面積能不能得到直角三角形三邊數量關系. (從學生已有的學習經驗出發,將探求邊長之間的關系轉化為探求面積之間的關系,讓學生覺得解決今天問題的方法并不陌生,增強探索問題的信心.)

(2)展示課本上圖19—1和圖19—2(1)的圖形,觀察圖中三個正方形有什么關系?

讓學生通過觀察,計算出三個正方形的面積可以發現:對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則AB。

(這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。)

(3)緊接著讓學生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出圖19.2(2)(一般直角三角形)。學生可以同樣求出兩個小正方形面積,只是求大正方形的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發現:對于一般的以整數為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。

給出書中的定理(板書)并用彎曲的手臂形象地表示勾、股、弦的概念,板書勾股定理,進而給出字母表達式.

通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數學思想及學習過程,提高學生的分析問題和解決問題的能力。

2、證明結論(教學時長8~10分鐘):

出示書中圖19—3,與學生共同分析證明并板書過程。通過給出定理的證明過程讓學生體會到數學知識從特殊性到一般性,并對一般性結論進行論證的嚴謹性。

借助多媒體課件,通過介紹古代在勾股定理研究方面取得的成就,感受數學文化,激發學生學習的熱情,體會古人偉大的智慧。

讓學生完成兩項任務:

任務一:教材練習第一題;

任務二:1,Rt?ABC中,c為斜邊,a=3,b=4.,則c=?

2,?ABC中c為最長邊,a=3,b=4,則c=?

任務一和任務二中第一題都是基礎題,對于任務二中第二題是提高題,對于做錯的學生進行引導讓其思考,再告知錯誤的原因。通過練習,讓學生更好的體會到,勾股定理揭示的是直角三角形三邊之間的數量關系,讓學生能夠更好的將數與形緊密聯系起來進行思考。

本節課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的的問題是什么???

通過小結,使學生進一步明確掌握教學目標,使知識成為體系。

讓學生收集有關勾股定理的證明方法,下節課展示、交流.使本節知識得到拓展、延伸,培養了學生能力和思維的深刻性,讓學生感受數學深厚的文化底蘊。

(六)板書設計,明確新知

本節課的板書設計,它分為三塊:一塊是復習引入,一塊是勾股定理;一塊是例題解析。它突出了重點,層次清楚,便于學生掌握,為獲得知識服務。

以上內容,我僅從教學背景分析、教材處理、教學策略、教學流程方面說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領導對本次說課提出寶貴的意見,謝謝!

《勾股定理》說課稿11<\/p>

一、勾股定理是我國古數學的一項偉大成就.勾股定理為我們提供了直角三角形的三邊間的數量關系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據,也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應用于數學和實際生活的各個方面.教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析,使學生獲得較為直觀的印象,通過聯系和比較,了解勾股定理在實際生活中的廣泛應用. 據此,制定教學目標如下:

1.知識和方法目標:通過對一些典型題目的思考,練習,能正確熟練地進行勾股定理有關計算,深入對勾股定理的理解. 2.過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的.

3.情感與態度目標:感受數學在生活中的應用,感受數學定理的美.

教學重點:勾股定理的應用. 教學難點:勾股定理的正確使用.

教學關鍵:在現實情境中捕抓直角三角形,確定好直角三角形之后,再應用勾股定理.

二.說教法和學法

1.以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程.

2.切實體現學生的主體地位,讓學生通過觀察,分析,討論,操作,歸納理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力.

3.通過演示實物,引導學生觀察,操作,分析,證明,使學生獲得新知的成功感受,從而激發學生鉆研新知的欲望.

三、教學程序本節內容的教學主要體現在學生的動手,動腦方面,根據學生的認知規律和學習心理,教學程序設置如下: 回顧問:勾股定理的內容是什么? 勾股定理揭示了直角三角形三邊之間的關系,今天我們來學習這個定理在實際生活中的應用.

《勾股定理》說課稿12<\/p>

一、說教材

本課時是華師大版八年級(上)數學第14章第二節內容,是在掌握勾股定理的基礎上對勾股定理的應用之一。 勾股定理是我國古數學的一項偉大成就。勾股定理為我們提供了直角三角形的三邊間的數量關系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據,也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應用于數學和實際生活的各個方面。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析,使學生獲得較為直觀的印象,通過聯系和比較,了解勾股定理在實際生活中的廣泛應用。 據此,制定教學目標如下:

1、知識和方法目標:通過對一些典型題目的思考,練習,能正確熟練地進行勾股定理有關計算,深入對勾股定理的理解。

2、過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的。

3、情感與態度目標:感受數學在生活中的應用,感受數學定理的美。

教學重點:勾股定理的應用。

教學難點:勾股定理的正確使用。

教學關鍵:在現實情境中捕抓直角三角形,確定好直角三角形之后,再應用勾股定理。

二、說教法和學法

1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

2、切實體現學生的主體地位,讓學生通過觀察,分析,討論,操作,歸納理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

3、通過演示實物,引導學生觀察,操作,分析,證明,使學生獲得新知的成功感受,從而激發學生鉆研新知的欲望。

三、教學程序

本節內容的教學主要體現在學生的動手,動腦方面,根據學生的認知規律和學習心理,教學程序設置如下:

一、回顧問:

勾股定理的內容是什么? 勾股定理揭示了直角三角形三邊之間的關系,今天我們來學習這個定理在實際生活中的應用。

二、新授課例

①學生取出自制圓柱,,嘗試從A點到C點沿圓柱側面畫出幾條路線。思考:那條路線最短?

②如圖,將圓柱側面剪開展成一個長方形,從A點到C點的最短路線是什么?你畫得對嗎?

③螞蟻從A點出發,想吃到C點處的食物,它沿圓柱側面爬行的最短路線是什么?

思路點撥:引導學生在自制的圓柱側面上尋找最短路線;提醒學生將圓柱側面展開成長方形,引導學生觀察分析發現“兩點之間的所有線中,線段最短”。 學生在自主探索的基礎上興趣高漲,氣氛異常的活躍,他們發現螞蟻從A點往上爬到B點后順著直徑爬向C點爬行的路線是最短的!我也意外的發現了這種爬法是正確的,但是課本上是順著側面往上爬的,我就告訴學生:“課本中的圓柱體是沒有上蓋的”。只有這樣課本上的解答才算是完全正確的。例2.(課本P58圖14.2.3)

思路點撥:廠門的寬度是足夠的,這個問題的關鍵是觀察當卡車位于廠門正中間時其高度是否小于CH,點D在離廠門中線0.8米處,且CD⊥AB, 與地面交于H,尋找出Rt△OCD,運用勾股定理求出2.3m,CD= = =0.6,CH=0.6+2.3=2.9>2.5可見卡車能順利通過 。詳細解題過程看課本 引導學生完成P58做一做。

三、課堂小練

1、課本P58練習第1,2題。

2、探究: 一門框的尺寸如圖所示,一塊長3米,寬2.2米的薄木板是否能從門框內通過?為什么?

四、小結

直角三角形在實際生活中有更為廣泛的應用希望同學們能緊緊抓住直角三角形的性質,學透勾股定理的具體應用,那樣就能很輕松的解決現實生活中的許多問題,達到事倍功半的效果。

五、布置作業

課本P60習題14.2第1,2,3題。

《勾股定理》說課稿13<\/p>

(一)創設問題情境,引入新課:

在這一環節中,我設計了這樣一個情境,多媒體動畫展示,米老鼠來到了數學王國里的三角形城堡,要求只利用一根繩子,構造一個直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預測大多數同學會無從下手,這樣引出課題。只有學習了勾股定理的逆定理后,大家都能幫助米老鼠進入城堡,我認為:“大疑而大進”這樣做,充分調動學習內容,激發求知欲望,動漫演示,又有了很強的趣味性,做到課之初,趣已生,疑已質。

(二)實踐猜想

本環節要圍繞以下幾個活動展開:

1、算一算:求以線段a,b為直角邊的直角三角形的斜邊c長。

1a=3b=42a=5b=123a=2.5b=64a=6b=8

2、猜一猜,以下列線段長為三邊的三角形形狀

13cm4cm5cm25cm12cm13cm

32.5cm6cm6.5cm46cm8cm10cm

3、擺一擺利用方便筷來操作問題2,利用量角器來度量,驗證問題2的發現。

4、用恰當的語言敘述你的結論

在算一算中學生復習了勾股定理,猜一猜和擺一擺中學生小組合作動手實踐,在問題1的基礎上做出合理的推測和猜想,這樣分層遞進找到了學生思維的最近發展區,面向不同層次的每一名學生,每一名學生都有參與數學活動的機會,最后運用恰當的語言表述,得到了勾股定理的逆定理。在整個過程的活動中,教師給學生充分的時間和空間,教師以平等的身份參與小組活動中,傾聽意見,幫助指導學生的實踐活動。學生的擺一擺的過程利用實物投影儀展示,在活動中教師關注;

1)學生的參與意識與動手能力。

2)是否清楚三角形三邊長度的平方關系是因,直角三角形是果。既先有數,后有形。

3)數形結合的思想方法及歸納能力。

(三)推理證明

八年級正是學生由實驗幾何向推理幾何過渡的重要時期,多數學生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構造直角三角形才能完成,而構造直角三角形就成為解決問題的關鍵,直接拋給學生證明,無疑會石沉大海,所以,我采用分層導進的方法,以求一石激起千層浪。

1.三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關系?你是怎樣得到的?請簡要說明理由?

2.△ABC三邊長a,b,c滿足a2+b2=c2與a,b為直角三角形之間有何關系?試說明理由?

為了較好完成教師的誘導,教師要給學生獨立思考的時間,要給學生在組內交流個別意見的時間,教師要深入小組指導與幫助,并利用實物投影儀展示小組成果,取得階段性成果再探究問題2.這樣由特殊到一般,凸顯了構造直角三角形這一解決問題的關鍵,讓他們在不斷的探究過程中,親自體驗參與發現創造的愉悅,有效的突破了難點。

《勾股定理》說課稿14<\/p>

一、教材分析

(一)教材地位

這節課是九年制義務教育初級中學教材北師大版七年級第二章第一節《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

(二)教學目標

1、知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。

2、過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想。

3、情感態度與價值觀: 激發學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創造,體驗數學的美感,從而了解數學,喜歡數學。

(三)教學重點

經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

教學難點:用面積法(拼圖法)發現勾股定理。

突出重點、突破難點的辦法:發揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。

二、教法與學法分析

學情分析:

七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。

另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

教法分析:

結合七年級學生和本節教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式, 選擇引導探索法。

把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。

三、教學過程設計

(一)創設情境,提出問題

(1)圖片欣賞勾股定理數形圖

1955年希臘發行美麗的勾股樹

20xx年國際數學的一枚紀念郵票

大會會標

設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值。

(2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?

設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環節。

(二)實驗操作模型構建

問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?

設計意圖:這樣做利于學生參與探索,利于培養學生的語言表達能力,體會數形結合的思想。

問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節的難點,組織學生合作交流)

設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。

通過以上實驗歸納總結勾股定理。

設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養學生抽象、概括的能力,同時發揮了學生的主體作用,體驗了從特殊—— 一般的認知規律。

(三)回歸生活應用新知

讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心。

(四)知識拓展鞏固深化

基礎題,情境題,探索題。

設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發展。知識的運用得到升華。

基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?

設計意圖:這道題立足于雙基.通過學生自己創設情境 ,鍛煉了發散思維。

情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。

探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發展空間想象能力。

(五)感悟收獲布置作業

這節課你的收獲是什么?

作業:

1、課本習題2.1

2、搜集有關勾股定理證明的資料。

四、板書設計

探索勾股定理

如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

設計說明:

1、探索定理采用面積法,為學生創設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法。

2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平。

圖文搜集自網絡,如有侵權,請聯系刪除。

鐵樹老師面試輔導,喜馬拉雅app—主播—教師面試大雜燴

《勾股定理》說課稿15<\/p>

一、說教材

(一)教材分析

本節內容選自人教版八年級數學下冊第17章第二節,是在上節“勾股定理”之后,繼續學習的一個直角三角形的判定定理,它是前面知識的繼續和深化,勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數計算的方法來證明幾何問題的思想,為將來學習解析幾何埋下了伏筆。

(二)教學目標

根據數學課標的要求和教材的具體內容,結合學生實際我確定了本節課的教學目標。

知識技能:

理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。

了解逆命題的概念,以及原命題為真時,它的逆命題不一定為真。

過程方法:

1、通過對勾股定理的逆定理的探索,經歷知識的發生、發展與形成的過程

2、通過用三角形三邊的數量關系來判斷三角形的形狀,體驗數形結合方法的應用

3、通過勾股定理的逆定理的證明,體會數與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。

情感態度:

在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神

(三)學情分析

盡管已到初二下學期的學生知識增多,能力增強,但思維的局限性還很大,能力之間也有差距,而利用“構造法”證明勾股定理的逆定理學生第一次見到,它要求根據已知條件構造一個直角三角形,根據學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節的難點,而勾股定理逆定理的應用是本節重點

重點:勾股定理逆定理的應用

難點:勾股定理逆定理的證明

二、說教法學法

數學課程不僅注重知識、技能,以及情感意識和創造力的培養,同樣注重社會實踐和體驗,教學要遵循以教師為主導,學生為主體的原則,因此我采用的教法學法如下:

在教學中以小組合作,自主探索為形式,采用“提問引導法”,通過“提出疑問”來啟發誘導學生,讓學生自覺主動地去分析問題、解決問題,學生在操作過程中不斷“發現問題——解決問題”,變學生“學會”為“會學”.這樣不僅使學生學習目標明確,而且能夠培養他們的合作精神和自主學習的能力。根據學法指導自主性和差異性原則,本節我主要采用自主探究學習法,通過設計一系列問題,引導學生主動探究新知,體現學習自主性,從不同層面發掘不同學生的不同能力。

三、說教學準備

1、多媒體教學課件

2、紙片、直尺、圓規等

3、對學生事先分組

四、說教學過程

根據本課教學內容以及數學課程學科特點,結合八年級學生的實際認知水平,我設計了如下六個教學環節:

(一)復習提問、引入新課

問題1:前面我們學習了勾股定理,你能說出它的題設和結論嗎?

問題2:若一個三角形三邊具有a2+b2=c2,能否確定這個三角形是直角三角形?

(二)動手操作、觀察猜想

探究一:分組做實驗

第一組同學每人畫一個邊長為3cm、4 cm、5 cm的三角形;

第二組同學每人畫一個邊長為2.5 cm、6 cm、7.5 cm的三角形;

第三組同學每人畫一個邊長為4 cm、7.5 cm、8.5 cm的三角形;

第四組同學每人畫一個邊長為2 cm、5 cm、6 cm的三角形。

問題1:觀察這些三角形,它們分別是什么形狀呢?并測量驗證

問題2:前三個三角形三邊具有怎樣的關系呢?

問題3: 結合三角形三邊長度的平方關系,你能猜一猜三角形的三邊長度與三角形的形狀之間有怎樣的關系嗎?

學生活動:動手、觀察、測量、思考、猜想

設計意圖:由特殊到一般,歸納猜想得出勾股定理的逆命題,既培養學生動手操作能力和尋求解決數學問題的一般方法,又體驗了數與形的內在聯系。

(三)實踐驗證,歸納證明

教師出示問題

問題1:對于一個真命題,它的逆命題是否也為真?學生舉例說明。

勾股定理的逆命題是否也正確?怎么證明?

問題2:三邊長度分別3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關系,你是怎樣得到的?

問題3:你能否借鑒問題2的方法來證明勾股定理的逆命題呢?

學生活動:觀察思考,動手操作,分組討論,交流合作

設計意圖:把“構造直角三角形”這一方法的獲取過程交給學生,讓他們在不斷的嘗試、探究的過程中,親身體驗參與發現的愉悅,有效地突破本節的難點。

勾股定理思想總結 · 第7篇

1. 的兩邊分別為5,12,另邊c為奇數,且a + b + c是3的倍數,則c應為_________,此三角形為________.

2.三角形中兩條較短的邊為a + b,a - b(ab),則當第三條邊為_______時,此三角形為直角三角形.

3.若 的三邊a,b,c滿足a2+b2+c2+50=6a+8b+l0c,則此三角形是_______三角形,面積為______.

4.已知在 中,BC=6,BC邊上的高為7,若AC=5,則AC邊上的高為 _________.

5.已知一個三角形的三邊分別為3k,4k,5k(k為自然數),則這個三角形為______,理由是_______.

6.一個三角形的三邊分別為7cm,24 cm,25 cm,則此三角形的面積為_________。

7.給出下列幾組數:①;②8,15,16;③n2-1,2n,n2+1;④m2-n2,2mn,m2+n2(m0).其中定能組成直角三角形三邊長的是( ).

8.下列各組數能構成直角三角形三邊長的是( ).

9.等邊三角形的三條高把這個三角形分成直角三角形的個數是( ).

10.如果一個三角形一邊的平方為2(m2+1),其余兩邊分別為m-1,m + l,那么這個三角形是( );

11.如圖18-2-5,在 中,D為BC上的一點,若AC=l7,AD=8,CD=15,AB=10,求 的周長和面積.

12.已知 中,AB=17 cm,BC=30 cm,BC上的中線AD=8 cm,請你判斷 的形狀,并說明理由 .

13.一種機器零件的形狀如圖18-2-6,規定這個零件中的 A和DBC都應為直角,工人師傅量得這個零件各邊的尺寸如圖(單位:mm),這個零件符合要求嗎?

14.如圖18-2-7,四邊形ABCD中, ,AB=3,BC=4,CD=12,AD=13,求四邊形ABCD的面積.

15.為了慶祝紅寶石婚紀念日,詹克和凱麗千家舉行聚會.詹克忽然發現他的年齡的平方與凱麗年齡的平方的差,正好等于他的'子女數目的平方,已知詹克比凱麗大一歲,現在他們都不到70歲.請問,當年結婚時,兩個人各是多少歲?現在共有子女幾人?(在西方,結婚40周年被稱為紅寶石婚,且該國的合法結婚年齡為16歲)

16.有一只喜鵲正在一棵高3 m的小樹的樹梢上覓食,它的巢筑在距離該樹24 m且高為14m的一棵大樹上,巢距離大樹頂部1m,這時,它聽到巢中幼鳥求助的叫聲,便立即趕過去.如果它飛行的速度為5m/s,那么它至少需要幾秒才能趕回巢中?。

17.給出一組式子:32+42=52,52+122=132,72+242=252,92+402=412,

(1)你能發現關于上述式子的一些規律嗎?

(2)請你運用規律,或者通過試驗的方法(利用計算器),給出第五個式子.

18.我們知道,以3,4,5為邊長的三角形為直角三角形,稱3,4,5為勾股數組,記為(3,4,5),類似地,還可得到下列勾股數組:(8,6,10),(15,8,17),(24,10,26)等.

(1)請你根據上述四組勾股數的規律,寫出第六組勾股數;

(2)試用數學等式描述上述勾股數組的規律;

19.(福州市)如圖18-2-8,校園內有兩棵樹,相距12m,一棵樹高13m,另一棵樹高8m.一只小鳥從一棵樹的頂端飛到另一棵樹的頂端,小鳥至少要飛______m.

勾股定理思想總結 · 第8篇

一、填空題(每空3分,共30分):

01、在直角△ABC中,斜邊AB=2,則AB2+BC2+CA2=.

03、一個等腰三角形的兩邊為4cm,9cm,則它的周長為cm.

04、一塊正方形土地的面積為800m2,則它的對角線長為m.

05、△ABC的三邊長分別是15、36、39,這個△ABC是三角形.

07、三邊之比為3:4:5的三角形的面積為24cm2,則它的周長為cm.

08、等腰三角形的腰長為10cm,底邊長為12cm,則其底邊上的高為cm.

09、△ABC中∠C=900,∠B=300,b=2cm,則c=cm.

10、如圖,AB=AC=10cm,AD⊥BC,∠B=300,則BD2=.

12、在長為3,4,5,12,13的線段中任意取三條可構成個直角三角形.

13、兩條直角邊為6cm,8cm的直角三角形的斜邊上的高為cm.

14、一個直角三角形的斜邊比一條直角邊多2cm,另一條直角邊為6cm,則斜邊的長為cm.

15、如圖,AB=AC=10cm,CD⊥AB,∠B=150,則CD=cm.

三、解答題(共50分):

16、一塊長方形土地ABCD的長為28m,寬為21m,小明站在長方形的一個頂點A上,他要走到對面的另

17、在正方體的一個頂點A處有一只螞蟻,現在要向頂點B處爬行,已知正方體的棱長為3cm,BC=1cm,

18、有一塊四邊形草坪,∠B=∠D=900,AB=24m,BC=7m,CD=15m,求草坪面積.(8分)

19、小明想知道學校的旗桿有多高,他發現旗桿頂上的繩子BD垂到地面還多CD=1米,當他把繩子的

下端D拉開5米到后,發現下端D剛好接觸地面A.你能幫他把旗桿的高度求出來嗎?(10分)

20、圓柱高8cm,底面半徑2cm,一只螞蟻從點A爬到點B處吃食的最短路程是多少?(π≈3)(8分)

21、小琳家的樓梯有若干級梯子。她測得樓梯的水平寬度AC=4米,樓梯的斜面長度AB=5米,現在

她家要在樓梯面上鋪設紅地毯。若準備購買的地毯的單價為20元/米,則她家至少應準備多少錢?

勾股定理思想總結 · 第9篇

1.13;直角三角形 2. 3.直角;6 4.8.4 5.直角三角形;勾股定理的逆定理 6.184 cm2

11.周長為48,面積為84. 提示:根據勾股定理的逆定理可知 為直角三角形,故AD BC,再根據勾股定理可得BD=6,從而可求解.

12. 為等腰三角形.

理由:在 中,AB=17cm,AD=8 cm,BD=15 cm,

為直角三角形.

AC=17 cm,

為等腰三角形.

13.符合.

14.連接AC,得 ,由勾股定理知AC=5,

AC2+CD2=52+122=169=132=AD2, ACD=S四邊形ABCD=S ABC+S ACD== 6+30=36.

15.詹克21歲,凱麗20歲,現在共有11個子女.

16.如圖,由題意知AB=3 m,CD=14-l=13 m,BD=24 m.過A作AE CD于E,則CE=13-3=10 m,AE=BD=24 m.在中,AC2=CE2+AF=102+242=262 m2, AC=26 m, 265=5.2 s, 它至少需要5.2 s才能趕回巢中.

17.(1)①每個等式中的三個底數都正好組成一組勾股數;

②每個等式中的最小的底數恰好是連續的奇數;

③最大的底數比第二大的底數大1;

④第二大的底數是偶數,最大的底數是奇數;

⑤這些等式中的底數都是代數式m2-n2,2mn,m2+n2,當m和n取不同正整數時得到的數.

(2)第五個式子應當是m=6,n=5時,所得的三個底數的平方和,即112+602=612.

18.(1)(48,14,50).

(2)設n2,且n為整數,勾股數組的規律為 (n2-l,n2,n2+1).

(3) (n2-1)2+(2n)2=n4-2n2+1+4n2=(n2+1)2,

以n2-1,2n,n2+l為三邊長的三角形為直角三角形.

勾股定理思想總結 · 第10篇

對于“勾股定理的應用”的反思和小結有以下幾個方面:

1、課前準備不充分:

基礎題中是一些由正方形和直角三角形拼合而成的圖形(與希臘郵票設計原理相同),其中兩個正方形的面積分別是14和18,求最大的正方形的面積。

分析:由勾股定理結論:直角三角形中兩直角邊的平方和等于斜邊的平方。

其實質即以直角三角形兩直角邊為邊長的兩個正方形面積之和等于以斜邊為邊長的正方形的面積。但學生竟然不知道。其二是課件準備不充分,其中有一道例題的答案是跟著例題同時出現的,再去修改,又浪費了一點時間。其三,用面積法求直角三角形的高,我認為是一個非常簡單的數學問題,但在實際教學中,發現很多學生仍然很難理解,說明我在備課時備學生不充分,沒有站在學生的角度去考慮問題。

2、課堂上的語言應該簡練。這是我上課的最大弱點,我不敢放手讓學生去獨立思考問題,會去重復題目意思,實際上不需要的,可以留時間讓學生去獨立思考。教師是無法代替學生自己的思考的,更不能代替幾十個有差異的學生的思維。課堂上老師放一放,學生得到的更多,老師放多少,學生就有多大的自主發展的空間。但這里的“放多少”是一門藝術,我要好好向老教師學習!

3、鼓勵學生的藝術。教師要鼓勵學生嘗試并尊重他們不完善的甚至錯誤的意見,經常鼓勵他們大膽說出自己的想法,大膽發表自己的見解,真正體現出學生是數學學習的主人。

4、啟發學生的技巧有待提高。啟發學生也是一門藝術,我的課堂上有點啟而不發。課堂上應該多了解學生。

勾股定理思想總結 · 第11篇

重點、難點分析

本節內容的重點是勾股定理的逆定理及其應用.它可用邊的關系判斷一個三角形是否為直角三角形.為判斷三角形的形狀提供了一個有力的依據.

本節內容的難點是勾股定理的逆定理的應用.在用勾股定理的逆定理時,分不清哪一條邊作斜邊,因此在用勾股定理的逆定理判斷三角形的形狀時而出錯;另外,在解決有關綜合問題時,要將給的邊的數量關系經過代數變化,最后達到一個目標式,這種“轉化”對學生來講也是一個困難的地方.

教法建議:

本節課教學模式主要采用“互動式”教學模式及“類比”的教學方法.通過前面所學的垂直平分線定理及其逆定理,做類比對象,讓學生自己提出問題并解決問題.在課堂教學中營造輕松、活潑的課堂氣氛.通過師生互動、生生互動、學生與教材之間的互動,造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達到培養學生思維能力的目的.具體說明如下:

(1)讓學生主動提出問題

利用類比的學習方法,由學生將上節課所學習的勾股定理的逆命題書寫出來.這里分別找學生口述文字;用符號、圖形的形式板書逆命題的內容.所有這些都由學生自己完成,估計學生不會感到困難.這樣設計主要是培養學生善于提出問題的習慣及能力.

(2)讓學生自己解決問題

判斷上述逆命題是否為真命題?對這一問題的解決,學生會感到有些困難,這里教師可做適當的點撥,但要盡可能的讓學生的發現和探索,找到解決問題的思路.

(3)通過實際問題的解決,培養學生的數學意識.

教學目標:

1、知識目標:

(1)理解并會證明勾股定理的逆定理;

(2)會應用勾股定理的逆定理判定一個三角形是否為直角三角形;

(3)知道什么叫勾股數,記住一些覺見的勾股數.

2、能力目標:

(1)通過勾股定理與其逆定理的比較,提高學生的辨析能力;

(2)通過勾股定理及以前的知識聯合起來綜合運用,提高綜合運用知識的能力.

3、情感目標:

(1)通過自主學習的發展體驗獲取數學知識的感受;

(2)通過知識的縱橫遷移感受數學的辯證特征.

教學重點:勾股定理的逆定理及其應用

教學難點:勾股定理的.逆定理及其應用

教學用具:直尺,微機

教學方法:以學生為主體的討論探索法

教學過程:

1、新課背景知識復習(投影)

勾股定理的內容

文字敘述(投影顯示)

符號表述

圖形(畫在黑板上)

2、逆定理的獲得

(1)讓學生用文字語言將上述定理的逆命題表述出來

(2)學生自己證明

逆定理:如果三角形的三邊長 有下面關系:

那么這個三角形是直角三角形

強調說明:(1)勾股定理及其逆定理的區別

勾股定理是直角三角形的性質定理,逆定理是直角三角形的判定定理.

(2)判定直角三角形的方法:

①角為 、②垂直、③勾股定理的逆定理

2、 定理的應用(投影顯示題目上)

例1 如果一個三角形的三邊長分別為

則這三角形是直角三角形

例2 如圖,已知:CD⊥AB于D,且有

求證:△ACB為直角三角形。

以上例題,分別由學生先思考,然后回答.師生共同補充完善.(教師做總結)

4、課堂小結:

(1)逆定理應用時易出現的錯誤:分不清哪一條邊作斜邊(最大邊)

(2)判定是否為直角三角形的一種方法:結合勾股定理和代數式、方程綜合運用。

5、布置作業:

a、書面作業P131#9

b、上交作業:已知:如圖,△DEF中,DE=17,EF=30,EF邊上的中線DG=8

求證:△DEF是等腰三角形

勾股定理思想總結 · 第12篇

一、教材分析:

(一)教材的地位與作用

從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數量關系,為后續學習解直角三角形提供重要的理論依據,在現實生活中有著廣泛的應用。

從學生認知結構上看,它把形的特征轉化成數量關系,架起了幾何與代數之間的橋梁;勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。

根據數學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數學思考、問題解決、情感態度。其中情感態度方面,以我國數學文化為主線,激發學生熱愛祖國悠久文化的情感。

(二)重點與難點

為變被動接受為主動探究,我確定本節課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發現勾股定理確定為本節課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。

二、教學與學法分析

教學方法葉圣陶說過"教師之為教,不在全盤授予,而在相機誘導。"因此教師利用幾何直觀提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。

學法指導為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。

三、教學過程

我國數學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節課設計為以下五個環節。

首先,情境導入古韻今風

給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。讓學生觀察并思考三個正方形面積之間的關系?它們圍成了怎么樣三角形,反映在三邊上,又蘊含著怎么樣數學奧秘呢?寓教于樂,激發學生好奇、探究的欲望。

第二步追溯歷史解密真相

勾股定理的探索過程是本節課的重點,依照數學知識的循序漸進、螺旋上升的原則,我設計如下三個活動。

從上面低起點的問題入手,有利于學生參與探索。學生很容易發現,在等腰三角形中存在如下關系。巧妙的將面積之間的關系轉化為邊長之間的關系,體現了轉化的思想。觀察發現雖然直觀,但面積計算更具說服力。將圖形轉化為邊在格線上的圖形,以便于計算圖形面積,體現了數形結合的思想。學生會想到用"數格子"的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應引導學生利用"割"和"補"的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。

突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現了"從特殊到一般"的認知規律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產生的錯誤,也為下面"勾三股四弦五"的.提出埋下伏筆。有了上一環節的鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示"割"的方法,"補"的方法,有的學生可能會發現平移的方法,旋轉的方法,對于這兩種新方法教師應給于表揚,肯定學生的研究成果,培養學生的類比、遷移以及探索問題的能力。

使用幾何畫板動態演示,使幾何與代數之間的關系可視化。當為直角三角形時,改變三邊長度三邊關系不變,當∠α為銳角或鈍角時,三邊關系就改變了,進而強調了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。

以上三個環節層層深入步步引導,學生歸納得到命題1,從而培養學生的合情推理能力以及語言表達能力。

感性認識未必是正確的,推理驗證證實我們的猜想。

第三步推陳出新借古鼎新

教材中直接給出"趙爽弦圖"的證法對學生的思維是一種禁錮,教師創新使用教材,利用拼圖活動解放學生的大腦,讓學生發揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質疑,對于不同的拼圖方案給予肯定。從而體現出"學生是學習的主體,教師是組織者、引導者與合作者"這一教學理念。學生會發現兩種證明方案。

方案1為趙爽弦圖,學生講解論證過程,再現古代數學家的探索方法。方案2為學生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經歷由表面到本質,由合情推理到演繹推理的發掘過程,體會數學的嚴謹性。對比"古"、"今"兩種證法,讓學生體會"吹盡黃沙始到金"的喜悅,感受到"青出于藍而勝于藍"的自豪感。板書勾股定理,進而給出字母表示,培養學生的符號意識。

教師對"勾、股、弦"的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數學文化,培養民族自豪感和愛國主義精神。利用勾股樹動態演示,讓學生欣賞數學的精巧、優美。

第四步取其精華古為今用

我按照"理解—掌握—運用"的梯度設計了如下三組習題。

(1)對應難點,鞏固所學。

(2)考查重點,深化新知。

(3)解決問題,感受應用。

第五步溫故反思任務后延

在課堂接近尾聲時,我鼓勵學生從"四基"的要求對本節課進行小結。進而總結出一個定理、二個方案、三種思想、四種經驗。

然后布置作業,分層作業體現了教育面向全體學生的理念。

勾股定理思想總結 · 第13篇

這節課是人教版九年義務教育課程標準實驗教材八年級第十八章勾股定理第一課時,是在前面學習了直角三角形一些性質的基礎上學習的。它是幾何的重要定理之一,它揭示了直角三角形三邊的數量關系,它將形與數密切聯系起來,在數學的發展中起著非常重要的作用,在現實世界中也有著廣泛的應用。學生通過對勾股定理的學習,對直角三角形有進一步的認識和理解,為今后學習解直角三角形打下基礎。

能說出勾股定理的內容,并能進行簡單的計算和實際應用.

經歷探索—猜想—歸納—驗證的數學發現過程,發展合情推理的能力,體會數形結合和由特殊到一般的數學思想.

1、使學生了解勾股定理的歷史,感受數學文化,激發學生的學習熱情和民族自豪感;

2、在探索勾股定理的過程中,培養學生的合作交流意識和探索精神,增進數學學習的信心,感受數學之美,探究之趣。

1、探索和證明勾股定理;2、運用勾股定理進行簡單的計算。

①自制學習卡;

②自制教學工具:四個全等的直角三角板(兩直角邊分別為 ,斜邊為 )、一塊模板(將一塊矩形板材中間挖出一個邊長為 的正方形,再將其背面襯一塊底板)。

問題1:在七年級我們學習了三角形的有關知識,如果已知一個三角形的兩條邊長分別為3和4,第三邊的長度確定嗎?

問題2:如果這兩邊的夾角為90°,第三邊的長度確定嗎?如何求第三邊的長度呢?

問題呈現后給學生適當思考時間,然后揭示課題:這一節課我們一起來研究直角三角形這一類特殊三角形中三邊的數量關系——勾股定理。

設計意圖:從數學問題出發,激活原有知識(三角形的任意兩邊之和大于第三邊,任意兩邊之差小于第三邊),將學生的原有認知作為新知的生長點,自然地引出本節課要探究的問題。

活動1(學習卡):(1)請你用三角板畫出一個直角三角形(為減小誤差,把直角邊取為整數)

你發現這些數據之間有什么關系嗎?

(4)你能猜想直角三角形的三邊的平方在數量上有什么關系嗎?

設計意圖:①此活動采取小組合作的方式,互相交流,共同分享,培養學生的分工和合作交流的意識;②通過讓學生動手操作,自主探究直角三角形三邊的數量關系,激發學生的學習熱情,增進數學學習的信心,同時發展合情推理的能力,體會由特殊到一般的數學思想.

活動2:(1)你能用所給的四個全等的直角三角形在正方形模板中拼出兩個空白的正方形嗎?

(2)你能用所給的四個全等的直角三角形在正方形模板中拼出一個空白的大正方形嗎?

問題3:以上拼出的兩個圖形的空白部分面積分別是多少?它們相等嗎?

由此我們可以得到一個什么關系式?

設計說明:①通過拼圖活動,以動手操作代替枯燥、單一的講解,把學習的主動權交給學生。在活動中,讓學生體會到成功的喜悅,進一步激發學生的學習熱情,使學生對定理的理解更加深刻,體會數學中的數形結合思想;②此活動過程是在畢達哥拉斯的'證法的基礎上加以改造,使拼圖方法和定理的演繹推理過程得以簡化,有效地突破了定理的證明這一難點。

1、介紹定理命名的含義:在中國古代把直角三角形中較短的直角邊稱為“勾”,較長的直角邊稱為“股”,斜邊稱為“弦”。

2、在西方一般認為這個定理是由古希臘數學家畢達哥拉斯發現的,所以人們稱這個定理為“畢達哥拉斯”定理。而實際上據我國著名《周髀算經》記載:約公元1千多年前,我國就已經發現了勾股定理。這比畢達哥拉斯的發現要早了幾百年。

3、世界上許多數學家,先后用400多種方法證明了這一定理。同學們在課后可以通過查閱資料或上網了解勾股定理的其它證法。

設計意圖:通過介紹勾股定理的歷史背景,感受數學文化,增加學生的數學史知識,從而體會到祖國數學歷史的悠久,對學生進行愛國主義教育,增強民族自豪感。

【例題講解】已知在Rt△ABC中,∠C=90°,

設計意圖:給出范例,讓學生了解用勾股定理進行計算的過程性要求,規范解題步驟,培養學生有條理地表達的能力。

設計意圖:采用合作探究的教學方式組織教學。在這個探究過程中,要求學生在獨立思考的基礎上進行合作交流,然后小組匯報,讓學生經歷和體驗如何將生活實際問題抽象成數學問題進而得以解決,激發學生應用數學的意識和能力。

7、在我國古代數學著作《九章算術》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形,在水池的中央有一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面,請問這個水池的深度和這根蘆葦的長度各是多少?

設計意圖:①進一步熟悉和掌握勾股定理,培養學生從實際問題中抽象出幾何模型的能力;②學會建立方程解決幾何問題,體會數形結合思想的運用,拓展學生綜合運用知識的能力,激發學生的學習潛能。

通過本節課的學習你有哪些收獲?

設計意圖:通過小結為學生創設交流、反思的空間,調動學生的積極性,既引導學生從面積的角度理解勾股定理,又從能力、情感、態度等方面關注學生對課堂整體感受,在輕松愉快的氣氛中體會收獲的喜悅。

1、鞏固型作業(略);

2、通過翻閱資料或上網查找有關證明勾股定理的方法,選擇你喜歡的兩種方法整理并打印出來(兩天內在組內交互,一周內小組交互,選擇不同的證明方法在班級展出)。

設計意圖:這個作業活動是開放的,它不僅為每個學生搭建了進一步探索和思考數學活動的平臺,而且給了他們施展自我才能的舞臺,有助于學生綜合素質的全面發展。

勾股定理思想總結 · 第14篇

一、教材分析

勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。

據此,制定教學目標如下:

1、理解并掌握勾股定理及其證明。

2、能夠靈活地運用勾股定理及其計算。

3、培養學生觀察、比較、分析、推理的能力。

4、通過介紹中國古代勾股方面的成就,激發學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。

教學重點:勾股定理的證明和應用。

教學難點:勾股定理的證明。

二、教法和學法

教法和學法是體現在整個教學過程中的,本課的教法和學法體現如下特點:

1、以自學輔導為主,充分發揮教師的主導作用,運用各種手段激發學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發學生鉆研新知的欲望。

三、教學程序

本節內容的教學主要體現在學生動手、動腦方面,根據學生的認知規律和學習心理,教學程序設計如下:

(一)創設情境 以古引新

1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發學生求知欲。

2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態。

3、板書課題,出示學習目標。

(二)初步感知 理解教材

教師指導學生自學教材,通過自學感悟理解新知,體現了學生的自主學習意識,鍛煉學生主動探究知識,養成良好的自學習慣。

(三)質疑解難 討論歸納

1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發學生的表現欲。

2、教師引導學生按照要求進行拼圖,觀察并分析;

(1)這兩個圖形有什么特點?

(2)你能寫出這兩個圖形的面積嗎?

(3)如何運用勾股定理?是否還有其他形式?

這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發性的點撥,最后,教師學生共同歸納,形成一致意見,最終解決疑難。

(四)鞏固練習 強化提高

1、出示練習,學生分組解答,并由學生總結解題規律。課堂教學中動靜結合,以免引起學生的疲勞。

2、出示例1學生試解,教師學生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。

(五)歸納總結 練習反饋

引導學生對知識要點進行總結,梳理學習思路。分發自我反饋練習,學生獨立完成。

本課意在創設愉悅和諧的樂學氣氛,優化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的教師學生關系。加強教師學生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創新精神和實踐能力得到培養。

勾股定理思想總結 · 第15篇

星期四下午講了《勾股定理逆定理》第一課時,現對本節課反思如下:

(1)這節課的設計思路比較合理:著重體現“探究”這一主題,從“古埃及人得到直角三角形的方法”到學生用木棒模仿操作,再到畫圖自己證明等一系列活動,得出“勾股定理逆定理”,而對互逆命題,原命題,逆命題等概念的講解只是作為新課引入的命題點化了一下,沒有詳細講解、把這節課的重點放在了如何讓學生通過三角形三邊關系判斷是否是直角三角形?在經過課堂練習及課堂檢測來強化學生對勾股定理逆定理的理解,分別從三角形的邊和角這方面來引導學生。

(2)本課PPT的使用是想凸顯“特征讓學生觀察,思路讓學生探索,方法讓學生思考,意義讓學生概括,結論讓學生驗證,難點讓學生突破,以學生為主體”的教學思路,每個環節都是緊密相接的。

(3)課堂教學環節和教學效果我感覺很滿意,學生在對問題的回答很積極,在突破難點的過程中,學生通過小組合作實驗交流,自己總結歸納勾股定理逆定理,及證明中我給與學生充分的思考時間讓學生自己完成。整個過程中體現了以學生為主,老師為主導的作用,課堂氣氛活躍,效果挺好。

本節課的不足之處及改進方法:

1、本節課我沒有及時發現學生的錯誤。在學生上黑板做題時出現的錯誤沒能及時發現及改正。

2、課堂檢測做完后應讓學生自己講解,但時間不夠導致這一環節沒能讓學生完成,而是在投影對了答案。

在以后教學中,我會不斷地更新教育理念,結合學生的認知規律、生活經驗對數教材進行再創造,選取密切聯系學生現實生活和生動有趣的數學素材,為學生提供充分的數學活動和交流的空間,真正把創造還給學生,讓學生動起來,讓課堂煥發新的活力。

勾股定理思想總結 · 第16篇

(一)知識點

1、體驗勾股定理的探索過程,由特例猜想勾股定理,再由特例驗證勾股定理。

2、會利用勾股定理解釋生活中的簡單現象。

(二)能力訓練要求

1、在學生充分觀察、歸納、猜想、探索勾股定理的過程中,發展合情推理能力,體會數形結合的思想。

2、在探索勾股定理的過程中,發展學生歸納、概括和有條理地表達活動過程及結論的能力。

(三)情感與價值觀要求

1、培養學生積極參與、合作交流的意識。

2、在探索勾股定理的過程中,體驗獲得成功的快樂,鍛煉學生克服困難的勇氣。

重點:探索和驗證勾股定理。

難點:在方格紙上通過計算面積的方法探索勾股定理。

交流探索猜想。

在方格紙上,同學們通過計算以直角三角形的三邊為邊長的三個正方形的面積,在合作交流的過程中,比較這三個正方形的面積,由此猜想出直角三角形的三邊關系。

1、學生每人課前準備若干張方格紙。

2、投影片三張:

第一張:填空(記作1.1.1A);

第二張:問題串(記作1.1.1B);

第三張:做一做(記作1.1.1C)。

Ⅰ、創設問題情境,引入新課

出示投影片(1.1.1A)

(1)三角形按角分類,可分為_________、_________、_________。

(2)對于一般的三角形來說,判斷它們全等的條件有哪些?對于直角三角形呢?

(3)有兩個直角三角形,如果有兩條邊對應相等,那么這兩個直角三角形一定全等嗎?

勾股定理思想總結 · 第17篇

以憤怒為斜邊

寂寞為股

失望為股

寂寞與失望互為交織

等邊的公平

直角的心理

股弦勾

兩股的孤獨面積

合蹦

延伸出自己走的斜邊

蜿蜒的路

掌中平原

斜高等于兩股乘積除以斜邊

從三角上割下一直

一道垂直的膿

這是古代歷法

不變

勾股定理思想總結 · 第18篇

尊敬的各位評委、老師,您們好,我是臨沂市蒼山縣實驗中學的宋寧。今天我說課的內容是人教版《數學》八年級下冊第十八章第一節《勾股定理》第一課時,我將從教材、教法與學法、教學過程、教學評價以及設計說明五個方面來闡述對本節課的理解與設計。

一、教材分析:

(一) 教材的地位與作用

從知識結構上看百度一下,勾股定理揭示了直角三角形三條邊之間的數量關系,為后續學習解直角三角形提供重要的理論依據,在現實生活中有著廣泛的應用。

從學生認知結構上看,它把形的特征轉化成數量關系,架起了幾何與代數之間的橋梁;

勾股定理又是對學生進行愛國主義教育的良好素材,因此具備相當重要的地位和作用。

根據數學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數學思考、問題解決、情感態度。其中【情感態度】方面,以我國數學文化為主線,激發學生熱愛祖國悠久文化的情感。

(二)重點與難點

為變被動接受為主動探究,我確定本節課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發現勾股定理確定為本節課的難點,我將引領學生動手實驗突出重點,合作交流突破難點。

二、教學與學法分析

教學方法 葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導?!币虼私處熇脦缀沃庇^提出問題,引領學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。

學法指導 為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。

三、教學過程

我國數學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節課設計為以下五個環節。

首先,情境導入 古韻今風

給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。(請看視頻)讓學生觀察并思考三個正方形面積之間的關系?它們圍成了什么三角形?反映在三邊上,又蘊含著什么數學奧秘呢?寓教于樂,激發學生好奇、探究的欲望。

勾股定理思想總結 · 第19篇

學習目標:

1、通過拼圖,用面積的方法說明勾股定理的正確性.

2、通過實例應用勾股定理,培養學生的知識應用技能.

  學習重點:

1.用面積的方法說明勾股定理的正確.

2. 勾股定理的應用.

學習難點:

勾股定理的應用.

學習過程:

一、學前準備:

1、閱讀課本第46頁到第47頁,完成下列問題:

(1)我國古代把直角三角形中較短的直角邊稱為勾,較長的稱為股,斜邊稱為弦。圖(1)稱為“弦圖”,最早是由三國時期的數學家趙爽在為《周髀算經》作法時給出的。圖(2)是在北京召開的20xx年國際數學家大會(TCM-20xx)的會標,其圖案正是“弦圖”,它標志著中國古代的數學成就. 你能用不同方法表示大正方形的面積嗎?

2、剪四個完全相同的直角三角形,然后將它們拼成如圖所示的圖形。大正方形的面積可以表示為_________________________,又可以表示為__________________________.對比兩種表示方法,看看能不能得到勾股定理的結論。用上面得到的完全相同的'四個直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說明勾股定理是正確的方法(請逐一說明)

二、合作探究:

(一)自學、相信自己:

(二)思索、交流:

拼圖填空:剪裁出若干個大小、形狀完全相同的直角三角形,三邊長分別記為a、b、c,如圖①.(1)拼圖一:分別用4張直角三角形紙片,拼成如圖②③的形狀,觀察圖②③可發現,圖②中兩個小正方形的面積之和

(三)應用、探究:

1、如圖 ,為了求出湖兩岸的A、B兩點之間的距離,一個觀測者在點C設樁,使三角形ABC恰好為直角三角形.通過測量,得到AC長160米,BC長128米.問從點A穿過湖到點B有多遠?

(四)鞏固練習:

1、如圖,64、400分別為所在正方形的面積,則圖中字

母A所代表的正方形面積是 _________ 。

三.學習體會:

本節課我們進一步認識了勾股定理,并用兩種方法證明了這個定理,在應用此定理解決問題時,應注意只有直角三角形的三邊才有這樣的關系,如果不是直角三角形應該構造直角三角形來解決。

2②圖

四.自我測試:

五.自我提高:

文章來源:http://www.alwaycall.com/shixifanwen/106665.html

猜你喜歡

更多>
91精品国产99久久_天天干天天干天天干天天_国产精品jizz在线观看软件_成人黄色在线播放

  1. <form id="fsw4v"></form>

    <sub id="fsw4v"></sub>

    <strike id="fsw4v"><pre id="fsw4v"></pre></strike>

    <form id="fsw4v"></form>
    <nav id="fsw4v"></nav>
    <form id="fsw4v"></form>
      <sub id="fsw4v"><listing id="fsw4v"><meter id="fsw4v"></meter></listing></sub>

      <nav id="fsw4v"><listing id="fsw4v"><meter id="fsw4v"></meter></listing></nav>
      1. <form id="fsw4v"><th id="fsw4v"><track id="fsw4v"></track></th></form>
        久久国内精品自在自线400部| 国产精品h在线观看| 国内久久视频| 欧美一区二区三区视频在线| 亚洲私人影院| 日韩视频在线观看一区二区| 国产精品久久久久秋霞鲁丝| 国产情侣久久| 91久久久久久久久久久久久| 国产精品久久77777| 欧美人交a欧美精品| 久久久久久亚洲精品中文字幕| 欧美精品一区二区三区很污很色的| 91久久在线观看| 久久久不卡网国产精品一区| 欧美片在线观看| 亚洲视频一区| 亚洲美女在线看| 欧美三级小说| 在线播放一区| 久久男人资源视频| 亚洲欧美日韩一区在线| 国产农村妇女精品一区二区| 欧美精品亚洲| 亚洲午夜视频在线| 欧美日韩一区二区视频在线观看| 麻豆av一区二区三区久久| 国产精品一区二区a| 亚洲精品一区二区三区在线观看| 亚洲精品乱码久久久久久日本蜜臀| 亚洲免费电影在线观看| 国产精品99一区二区| 亚洲高清av| 国产精品亚洲网站| 欧美日韩一区二区高清| 欧美日韩在线播放一区| 国内久久婷婷综合| 国产精品video| 国产亚洲女人久久久久毛片| 嫩草国产精品入口| 欧美精品国产精品日韩精品| 欧美激情精品久久久久久变态| 欧美午夜不卡影院在线观看完整版免费| 欧美激情日韩| 欧美激情免费观看| 蜜桃久久精品乱码一区二区| 亚洲免费福利视频| 欧美高清视频一区二区三区在线观看| 黄页网站一区| 亚洲少妇诱惑| 久久婷婷人人澡人人喊人人爽| 一本到高清视频免费精品| 久久精品中文字幕一区二区三区| 亚洲三级观看| 亚洲大片在线| 99在线热播精品免费99热| 亚洲一区影音先锋| 亚洲国产成人精品女人久久久| 一区在线视频| 亚洲夜晚福利在线观看| 国产亚洲欧美日韩美女| 久久一二三国产| 国产精品日韩久久久| 亚洲一区二区三区国产| 欧美视频中文一区二区三区在线观看| 亚洲国产欧洲综合997久久| 国产一区在线免费观看| 欧美成人按摩| 日韩视频中文字幕| 99www免费人成精品| 欧美一二三视频| 欧美另类在线播放| 影音先锋久久精品| 国产视频精品va久久久久久| 欧美日韩免费高清一区色橹橹| 欧美与黑人午夜性猛交久久久| 亚洲欧洲日产国产网站| 国产精品久久久久国产精品日日| 久久久久国产精品一区三寸| 欧美三级在线| 国户精品久久久久久久久久久不卡| 99re6热只有精品免费观看| 亚洲成人在线免费| 国产女同一区二区| 久热精品视频在线免费观看| 美女国内精品自产拍在线播放| 欧美日韩精品二区第二页| 久久夜色撩人精品| 久久久久国色av免费看影院| 欧美xart系列在线观看| 久久久免费精品视频| 亚洲黄色av一区| 午夜精品久久久久久久99热浪潮| 久久婷婷国产综合国色天香| 久久久久国色av免费观看性色| 久久av在线看| 日韩一本二本av| 国产精品久久二区二区| 久久久久久高潮国产精品视| 欧美xxxx在线观看| 亚洲国产一区二区视频| 国产精品久久久久久久9999| 美国三级日本三级久久99| 欧美电影免费观看网站| 国产精品国产自产拍高清av| 国语自产精品视频在线看8查询8| 欧美日韩在线综合| 国产视频久久久久| 欧美福利电影在线观看| 国产精品美女久久久久久免费| 韩日精品视频一区| av成人福利| 国产精品日日摸夜夜添夜夜av| 国产日韩欧美精品一区| 欧美第一黄网免费网站| 牛夜精品久久久久久久99黑人| 欧美在线观看视频一区二区三区| 亚洲精品一区二区三区不| 欧美一区在线视频| 久久国产精品久久国产精品| 欧美激情区在线播放| 狠狠干狠狠久久| 亚洲经典视频在线观看| 欧美日韩国产黄| 国内精品久久久久久久影视蜜臀| 午夜免费在线观看精品视频| 国产精品美女久久久久久2018| 麻豆国产精品一区二区三区| 欧美婷婷久久| 亚洲影视九九影院在线观看| 狠狠狠色丁香婷婷综合激情| 欧美国产在线视频| 国产精品免费网站在线观看| 国产精品久久亚洲7777| 在线观看日韩av电影| 亚洲欧洲在线免费| 亚洲免费在线| 国产精品99久久久久久久久| 亚洲乱码国产乱码精品精98午夜| 国产精品私人影院| 性做久久久久久免费观看欧美| 91久久精品国产91性色tv| 久久只精品国产| 日韩一级黄色av| 亚洲欧美日韩一区二区在线| 一本久久精品一区二区| 亚洲精选大片| 狠久久av成人天堂| 亚洲视频在线二区| 久久久久久久久久久久久女国产乱| 亚洲国产精品一区| 欧美777四色影视在线| 亚洲欧美资源在线| 欧美区在线观看| 亚洲最新在线视频| 精品成人一区| 久久精品国产亚洲a| 国产精品久久久久久影院8一贰佰| 亚洲欧美日韩中文播放| 欧美激情在线免费观看| 黑人极品videos精品欧美裸| av成人免费| 性伦欧美刺激片在线观看| 欧美日韩精品是欧美日韩精品|